1887

Abstract

Mutagenesis of yielded two major classes of mutant, both having cell surface polysaccharides fundamentally different from the wild-type. The wild-type bacterium produced copious amounts of extracellular slime polysaccharide containing glucose, mannose and glucuronic acid in a ratio of 2:2:1. ‘Non-mucoid’ mutants produced trace amounts of exopolysaccharide identical to the wild-type product; ‘crenated’ mutants produced material with an unusual composition containing sugars normally found in the lipopolysaccharide. Analysis of lipopolysaccharide fractions from these strains showed that the wild-type polysaccharide fraction contained predominantly glucose. Polysaccharides from the two classes of mutant bacteria were similar and contained rhamnose, galactose and smaller amounts of glucose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-124-2-385
1981-06-01
2021-05-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/124/2/mic-124-2-385.html?itemId=/content/journal/micro/10.1099/00221287-124-2-385&mimeType=html&fmt=ahah

References

  1. Ames G.F.L., Spudich E.M., Nikaido H. 1974; Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations. Journal of Bacteriology 117:406–416
    [Google Scholar]
  2. Bitter T., Muir H.M. 1962; A modified uronic acid carbazole reaction. Analytical Biochemistry 4:330–334
    [Google Scholar]
  3. Buchanan R.E., Gibbons N.E. (editors) 1974 Bergey’s Manual of Determinative Bacteriology, 8th. Baltimore:: Williams & Wilkins.;
    [Google Scholar]
  4. Cadmus M.C., Rogovin S.P., Burton K.A., Pittsley J.E., Knutson C.A., Jeanes A. 1976; Colonial variation in Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from a variant strain. Canadian Journal of Microbiology 22:942–948
    [Google Scholar]
  5. Chatterjee A.K., Ross H., Sanderson K.E. 1976; Leakage of periplasmic enzymes from lipopolysaccharide-defective mutants of Salmonella typhimurium . Canadian Journal of Microbiology 22:1549–1560
    [Google Scholar]
  6. Corey R.R., Starr M.P. 1957; Colony types of Xanthomonas phaseoli . Journal of Bacteriology 74:137–140
    [Google Scholar]
  7. Dazzo F.B., Brill W.J. 1977; Receptor site on clover and alfalfa roots for Rhizobium . Applied and Environmental Microbiology 33:132–136
    [Google Scholar]
  8. Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28:350–356
    [Google Scholar]
  9. Fareed V.S., Percival E. 1976; Structural investigations of the extracellular polysaccharide elaborated by S19, a Xanthomonas-type bacterium. Carbohydrate Research 49:427–438
    [Google Scholar]
  10. Gorin P.A.J., Spencer J.F.T. 1961; Structural relationships of extracellular polysaccharides from phytopathogenic Xanthomonas species. Canadian Journal of Chemistry 39:2252–2259
    [Google Scholar]
  11. Hestrin S. 1949; The reaction of acetylcholine and other carboxylic acid derivatives with hydroxyl- amine and its analytical application. Journal of Biological Chemistry 180:249–261
    [Google Scholar]
  12. Hickman J., Ashwell G. 1966; Isolation of a bacterial lipopolysaccharide from Xanthomonas campestris containing 3-acetamido-3,6-dideoxy-d- galactose and d-rhamnose. Journal of Biological Chemistry 241:1424–1428
    [Google Scholar]
  13. Konisék J., Lasick J., Wurst M. 1977; Production and characteristics of the exocellular polysaccharide in mutant strains. Folia micro-biologica 22:12–18
    [Google Scholar]
  14. Koplow J., Goldfine H. 1974; Alterations in the outer membrane of the cell envelope of heptose-deficient mutants of Escherichia coli . Journal of Bacteriology 117:527–543
    [Google Scholar]
  15. Koval S.F., Meadow P.M. 1977; The isolation and characterization of lipopolysaccharide-defective mutants of Pseudomonas aeruginosa PAC1. Journal of General Microbiology 98:387–398
    [Google Scholar]
  16. Linton J.D., Cripps R.E. 1978; The occurrence and identification of intracellular polyglucose storage granules in Methylococcus NCIB 11083 grown in chemostat culture on methane. Archives of Microbiology 117:41–48
    [Google Scholar]
  17. Morris E.R., Rees D.A., Young G., Walkinshaw M.D., Darke A. 1977; Order- disorder transitions for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host. Journal of Molecular Biology 110:1–16
    [Google Scholar]
  18. Nikaido H. 1968; Biosynthesis of cell wall lipopoly- saccharides in gram negative enteric bacteria. Advances in Enzymology 31:77–89
    [Google Scholar]
  19. Norval M., Sutherland I.W. 1969; A group of Klebsiella mutants showing temperature-dependent polysaccharide synthesis. Journal of General Microbiology 57:369–377
    [Google Scholar]
  20. Sandford P.A., Pittsley J.E., Knutson C.A., Watson P.R., Cadmus M.C., Jeanes A. 1976 In Extracellular Microbial Polysaccharides, American Chemical Society Symposium 45 pp. 192–210 Sandford P.A., Laskin A. Edited by Washington, D.C.:: American Chemical Society.;
    [Google Scholar]
  21. Schlabach A.J. 1970 Dissertation Abstracts, International Section B31:1427–1428
    [Google Scholar]
  22. Seymour F.R., Chen E.C.M., Bishop S.H. 1979; Identification of aldoses by use of their peracetylated aldononitrile derivatives: a GLC-MS approach. Carbohydrate Research 73:19–45
    [Google Scholar]
  23. Stocker B.A.D., Mäkelä P.H. 1978; Genetics of the (gram negative) bacterial surface. Proceedings of the Royal Society B202:5–30
    [Google Scholar]
  24. Sutherland I.W., Ellwood D.C. 1979; Microbial exopolysaccharides - industrial polymers of current and future potential. Symposia of the Society for General Microbiology 29:107–150
    [Google Scholar]
  25. Sutherland I.W., Wilkinson J.F. 1965; Depolymerases for bacterial exopolysaccharides obtained from phage-infected bacteria. Journal of General Microbiology 39:373–383
    [Google Scholar]
  26. Sutton J.C., Williams P.H. 1969; Comparison of extracellular polysaccharides of Xanthomonas campestris from culture and from infected cabbage leaves. Canadian Journal of Botany 48:645–651
    [Google Scholar]
  27. Trevelyan W.E., Procter D.P., Harrison J.S. 1950; Detection of sugars on paper chromatograms. Nature; London: 166444–445
    [Google Scholar]
  28. Volk W.A. 1968; Isolation of d-galacturonic acid 1-phosphate from hydrolysates of cell wall lipopoly- saccharide extracted from Xanthomonas campestris . Journal of Bacteriology 95:782–786
    [Google Scholar]
  29. Volk W.A., Salmonsky N.L., Hunt D. 1972; Xanthomonas sinensis cell wall lipopolysaccharides. I. Isolation of 4,7-anhydro- and 4,8-anhydro-3- deoxy-octulosonic acid following acid hydrolysis. Journal of Biological Chemistry 247:3881–3887
    [Google Scholar]
  30. Westphal O., Lüderitz O. 1954; Chemische Erforschung von Lipopolysacchariden Gram- negativen Bakterien. Angewandte Chemie 66:407–417
    [Google Scholar]
  31. Whistler R.L., Conrad H.E. 1954; 2-O-(d-galactopyranosyluronic acid)-l-rhamnose from okra mucilage. Journal of the American Chemical Society 76:3544–3546
    [Google Scholar]
  32. Wilkinson R.G., Gemski P., Stocker B.A.D. 1972; Non-smooth mutants of Salmonella typhimurium: differentiation by phage sensitivity and genetic mapping. Journal of General Microbiology 70:527–554
    [Google Scholar]
  33. Yadomae T., Yamada H., Miyazaki T., Omori T., Hirota T. 1978; Characterization of an extracellular polysaccharide from a Xanthomonas species. Carbohydrate Research 60:129–139
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-124-2-385
Loading
/content/journal/micro/10.1099/00221287-124-2-385
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error