1887

Abstract

-Ketoadipate induces catabolic enzymes in The compound is transported by a system which also concentrates adipate, a non-metabolizable analogue of -ketoadipate. The natural substrate, -ketoadipate, competitively inhibits adipate transport with a of 0·04 m, lower than the of 0·23 m observed with adipate. Transport is inhibited competitively by succinate ( 1·3 m) and non-competitively by acetate ( 5·3 m). The system has a sharp pH optimum at 5·5. Transport activity is stimulated by a variety of ions, and salt concentrations in excess of 0·1 are required to achieve optimal rates of influx. The transport system is inhibited by proton conductors and thiol reagents. Membrane vesicle preparations concentrate adipate when supplied with an oxidizable energy source. Induction of the transport system does not allow the rapid utilization of exogenous -ketoadipate. Nevertheless, the system has been conserved in the evolution of divergent species. The selective value of the -ketoadipate transport system may lie in its apparent function in chemotaxis and in its ability to control intracellular concentrations of the inducing metabolite, -ketoadipate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-120-1-199
1980-09-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/120/1/mic-120-1-199.html?itemId=/content/journal/micro/10.1099/00221287-120-1-199&mimeType=html&fmt=ahah

References

  1. Berger E. A., Heppel L. A. 1974; Different mechanisms of energy coupling for the shock- sensitive and shock-resistant amino acid permeases of Escherichia coli. . Journal of Biological Chemistry 249:7747–7755
    [Google Scholar]
  2. Dubler R. E., Toscano W. A. Jr Hartline R. A. 1974; Transport of succinate by Pseudomonas putida. . Archives of Biochemistry and Biophysics 160:422–429
    [Google Scholar]
  3. Heppel L. A. 1967; Selective release of enzymes from bacteria. Science 156:1451–1455
    [Google Scholar]
  4. Kaback H. R. 1971; Bacterial membranes. Methods in Enzymology 22:99–120
    [Google Scholar]
  5. Kaback H. R., Barnes E. M. Jr 1971; Mechanisms of active transport in isolated membrane vesicles. II. The mechanism of energy coupling between d-lactic dehydrogenase and β-galactoside transport in membrane preparations from Escherichia coli. . Journal of Biological Chemistry 246:5523–5531
    [Google Scholar]
  6. Kalckar H. M. 1976; The periplasmic galactose receptor protein of Escherichia coli in relation to galactose chemotaxis. Biochimie 58:81–85
    [Google Scholar]
  7. Meagher R. B., Mccorkle G. M., Ornston M. K., Ornston L. N. 1972; Inducible uptake system for p'-carboxy-m,m-muconate in a permeability mutant of Pseudomonas putida. . Journal of Bacteriology 111:465–473
    [Google Scholar]
  8. Moulton R. C., Montie T. C. 1979; Chemotaxis by Pseudomonas aeruginosa. . Journal of Bacteriology 137:274–280
    [Google Scholar]
  9. Ornston L. N. 1971; Regulation of catabolic pathways in Pseudomonas. . Bacteriological Reviews 35:87–116
    [Google Scholar]
  10. Ornston L. N., Parke D. 1976; Properties of an inducible uptake system for β-ketoadipate in Pseudomonas putida. . Journal of Bacteriology 125:475–488
    [Google Scholar]
  11. Ornston L. N., Parke D. 1977; The evolution of induction mechanisms in bacteria: insights derived from the study of the β-ketoadipate pathway. Current Topics in Cellular Regulation 12:209–262
    [Google Scholar]
  12. Ornston L. N., Stanier R. Y. 1966; The conversion of catechol and protocatechuate to to β-ketoadipate by Pseudomonas putida. I. Biochemistry. Journal of Biological Chemistry 241:3876–3886
    [Google Scholar]
  13. Parke D. 1979; Structural comparison of γ- carboxymuconolactone decarboxylase and muco- nolactone isomerase from Pseudomonas putida. . Biochimica et biophysica acta 578:145–154
    [Google Scholar]
  14. Parke D., Ornston L. N. 1976; Constitutive synthesis of enzymes of the protocatechuate pathway and of the β-ketoadipate uptake system in mutant strains of Pseudomonas putida. . Journal of Bacteriology 126:272–281
    [Google Scholar]
  15. Patel R. N., Ornston L. N. 1976; Immunological comparison of enzymes of the β-ketoadipate pathway. Archives of Microbiology 110:27–36
    [Google Scholar]
  16. Riegel B., Lilienfeld W. M. 1945; The synthesis of β-keto esters by the decomposition of acylated malonic esters. Journal of the American Chemical Society 67:1273–1275
    [Google Scholar]
  17. Silhavy T. J., Boos W., Kalckar H. M. 1974; The role of the Escherichia coli galactose-binding protein in galactose transport and chemotaxis. In Biochemistry and Sensory Functions pp. 165–205 Jaenicke L. Edited by New York: Springer-Verlag;
    [Google Scholar]
  18. Stanier R. Y. 1947; Simultaneous adaptation: a new technique for the study of metabolic pathways. Journal of Bacteriology 54:339–348
    [Google Scholar]
  19. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. Journal of General Microbiology 43:159–271
    [Google Scholar]
  20. Stinson M. W., Cohen M. A., Merrick J. M. 1976; Isolation of dicarboxylic acid and glucosebinding proteins from Pseudomonas aeruginosa. . Journal of Bacteriology 128:573–579
    [Google Scholar]
  21. Thayer J. R., Wheelis M. L. 1976; Characterization of a benzoate permease mutant of Pseudomonas putida. . Archives of Microbiology 110:37–42
    [Google Scholar]
  22. Weill-Thevenet N. J., Hermann M., Vandecasteele J.-P. 1979; Lysine transport systems in Pseudomonas in relation to their physiological function. Journal of General Microbiology 111:263–269
    [Google Scholar]
  23. Wheelis M. L., Ornston L. N. 1972; Genetic control of enzyme induction in the β-ketoadipate pathway of Pseudomonas putida: deletion mapping of cat mutations. Journal of Bacteriology 109:790–795
    [Google Scholar]
/content/journal/micro/10.1099/00221287-120-1-199
Loading
/content/journal/micro/10.1099/00221287-120-1-199
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error