1887

Abstract

The phenotypes of certain mutant strains of were reported to be pleiotropic for nitrate reduction; these strains were selected for their inability to dissimilate nitrate and were found also to have lost the ability to assimilate nitrate. We now report that the isolation procedure selected two mutations, one in genes encoding the synthesis of dissimilatory nitrate reductase ( or ) and another in one of the genes () encoding the synthesis of assimilatory nitrate reductase. Thus in dissimilatory and assimilatory nitrate reductases are genetically distinct. However, a loss of both enzymes is necessary to prevent slow dissimilatory growth on nitrate. Assimilatory nitrate reductase requires molybdenum to function, as does dissimilatory nitrate reductase. Lesions in affect incorporation of molybdenum into both enzymes, and hence exert a pleiotropic effect.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-118-1-229
1980-05-01
2021-05-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/118/1/mic-118-1-229.html?itemId=/content/journal/micro/10.1099/00221287-118-1-229&mimeType=html&fmt=ahah

References

  1. Fewson C. A., Nicholas D. J. D. 1961; Nitrate reductase from Pseudomonas aeruginosa. Biochimica et biophysica acta 49:335–349
    [Google Scholar]
  2. Guerrero M. G., Vega J. M., Leadbetter E., Losada M. 1973; Preparation and characterization of a soluble nitrate reductase from Azotobacter chroococcum. Archiv für Mikrobiologie 91:287–304
    [Google Scholar]
  3. Holloway B. W. 1969; Genetics of Pseudomonas. Bacteriological Reviews 33:419–443
    [Google Scholar]
  4. Magalhaes L. M. S., Neyra C., Dobereiner J. 1978; Nitrate and nitrite reductase negative mutants of N2-fixing Azospirillum spp. Archives of Microbiology 117:247–252
    [Google Scholar]
  5. Pichinoty F., Puig J., Chippaux M., Blgliardi-Rouvier J., Gendre J. 1969; Recherchessur des mutants bactériens ayant perdu les activités catalytiques liées a la nitrate-réductase A. II. Comportementenvers le chlorate et le chlorite. Annales de l’Institut Pasteur 116:409–432
    [Google Scholar]
  6. Piéchaud M., Puig J., Pichinoty F., Azoulay E., Leminor L. 1967; Mutations affectant la nitrate-réductase A et d’autres enzymes bactériiennes d’oxydoréduction. Etude preliminaire. Annales de l’Institut Pasteur 112:24–37
    [Google Scholar]
  7. Sias S. R., Ingraham J. L. 1979; Isolation and analysis of mutants of Pseudomonas aeruginosa unable to assimilate nitrate. Archives of Microbiology(in the Press).
    [Google Scholar]
  8. Sias S. R., Ingraham J. L. 1980; Chromosomal location in Pseudomonas aeruginosa of genes encoding assimilatory nitrate reductase. Journal of Bacteriology (in the Press).
    [Google Scholar]
  9. Stouthamer A. H. 1967; Nitrate reduction in Aerobacteraerogenes. I. Isolation and properties of mutant strains blocked in nitrate assimilation and resistant to chlorate. Archiv für Mikrobiologie 56:68–75
    [Google Scholar]
  10. Stouthamer A. H. 1976; Biochemistry and genetics of nitrate reductase in bacteria. Advances in Microbial Physiology 14:315–375
    [Google Scholar]
  11. Van Hartingsveldt J., Marinus M. G., Stouthamer A. H. 1971; Mutants of Pseudomonas aeruginosa blocked in nitrate or nitrite dissimilation. Genetics 67:469–482
    [Google Scholar]
  12. Van Hartingsveldt J., Stouthamer A. H. 1973; Mapping and characterization of mutants of Pseudomonas aeruginosa affected in nitrate respiration in aerobic or anaerobic growth. Journal of General Microbiology 74:97–106
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-118-1-229
Loading
/content/journal/micro/10.1099/00221287-118-1-229
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error