1887

Abstract

Growth yields, enzyme activities, cytochrome concentrations and the rates of product formation were determined in cultures grown in a chemostat with lactate as the energy source at various concentrations of oxygen. Oxygen was toxic when its partial pressure in the inflowing gas was just sufficient to give measurable dissolved oxygen concentration in the culture, when it inhibited lactate oxidation and NADH oxidase activity. Below this oxygen concentration, behaved as a facultative anaerobe. The adaptation from anaerobic metabolism to aerobic metabolism, however, was complex. Low partial pressures of oxygen led to decreased cytochrome and membrane-bound dehydrogenase activities and molar growth yield. Above an oxygen partial pressure of 42 mmHg in the inflowing gas stream, these changes were reversed, leading to an aerobic type of metabolism. At the highest subtoxic concentration of oxygen used (330 mmHg in the input gas), lactate was oxidized mainly to acetate and carbon dioxide and the rate of propionate formation was very low. The high molar growth yield obtained under these conditions suggested that lactate and NADH oxidation via the cytochrome electron transport system was coupled to ATP synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-102-2-223
1977-10-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/102/2/mic-102-2-223.html?itemId=/content/journal/micro/10.1099/00221287-102-2-223&mimeType=html&fmt=ahah

References

  1. Allen S. H. G., Kellermeyer R. W., Stjern-Holm R. L., Wood H. G. 1964; Purification and properties of enzymes involved in propionic acid fermentation. Journal of Bacteriology 87:171–187
    [Google Scholar]
  2. Barker S. B., Summerson W. H. 1941; The colorimetric determination of lactic acid in biological material. Journal of Biological Chemistry 138:535–554
    [Google Scholar]
  3. Beauchamp C., Fridovich I. 1971; Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44:276–287
    [Google Scholar]
  4. Bonartseva G. A., Krainova O. A., Vorob’eva L. I. 1973; Pathways of terminal oxidation in propionic acid bacteria. Mikrobiologiya 42:583–588
    [Google Scholar]
  5. Bryukhacheva N. L., Bonartseva G. A., Vorob’eva L. I. 1975; Oxidative phosphorylation in propionic acid bacteria. Mikrobiologiya 44:11–15
    [Google Scholar]
  6. Buchanan R. E., Gibbons N. E.editors 1974 Bergey’s Manual of Determinative Bacteriology, 8th edn.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  7. Chaix P., Fromageot C. 1942; Les cytochromes de Propionibacterium pentosaceum. Bulletin de la Société de chimie biologique 24:1125–1127
    [Google Scholar]
  8. Delwiche E. A., Carson S. F. 1953; A citric acid cycle in Propionibacterium pentosaceum. Journal of Bacteriology 65:318–321
    [Google Scholar]
  9. Van Gent-Ruijters M. L. W., De Meijere F. A., De Vries W., Stouthamer A. H. 1976; Lactate metabolism in Propionibacterium pentosaceum growing with nitrate or oxygen as hydrogen acceptor. Antonie van Leeuwenhoek 42:217–228
    [Google Scholar]
  10. Gray C. T., Wimpenny J. W. T., Hughes D. E., Mossman M. R. 1966; Regulation of metabolism in facultative bacteria. 1. Structural and functional changes in Escherichia coli associated with shifts between aerobic and anaerobic states. Biochimica et biophysica acta 117:22–32
    [Google Scholar]
  11. Hughes D. E. 1951; A press for disrupting bacteria and other micro-organisms. British Journal of Experimental Pathology 32:97–109
    [Google Scholar]
  12. Kulaev I. S., Vorob’eva L. I., Konovalova L.V, Bobyk M. A., Konoschenko G. I., Uryson S. O. 1973; Enzymes of polyphosphate metabolism during growth of Propionibacterium shermanii under normal conditions and in the presence of Polymyxin M. Biokhimiya 38:712–717
    [Google Scholar]
  13. Lara F. J. S. 1959; The succinic dehydrogenase of Propionibacterium pentosaceum. Biochimica et biophysica acta 33:565–567
    [Google Scholar]
  14. Linton J. D., Harrison D. E. F., Bull A. T. 1975; Molar growth yields, respiration and cytochrome patterns of Beneckea natriegens when grown at different medium dissolved-oxygen tensions. Journal of General Microbiology 90:237–246
    [Google Scholar]
  15. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein determination with Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  16. Menon J. A., Shemin D. 1967; Concurrent decrease of enzyme activities concerned with the synthesis of coenzyme B12 and of propionic acid in propionibacteria. Archives of Biochemistry and Biophysics 121:304–310
    [Google Scholar]
  17. Molinari R., Lara F. J. 1960; The lactic dehydrogenase of Propionibacterium pentosaceum. Biochemical Journal 75:57–65
    [Google Scholar]
  18. Scholes P., Mitchell P. 1970; Respiration-driven proton translocation in Micrococcus denitrificans. Journal of Bioenergetics 1:309–323
    [Google Scholar]
  19. Schwartz A. C. 1973a; Terpenoid quinones of the anaerobic Propionibacterium shermanii. I(II, lII)-Tetrahydromenaquinone-9. Archiv für Mikrobiologie 91:273–279
    [Google Scholar]
  20. Schwartz A. C. 1973b; Anaerobiosis and oxygen consumption of some strains of Propionibacterium and a modified method for comparing the oxygen sensitivity of various anaerobes. Zeitschrift für allgemeine Mikrobiologie 13:681–691
    [Google Scholar]
  21. Schwartz A. C., Sporkenbach J. 1975; The electron transport system of the anaerobic Propionibacterium shermanii. Cytochrome and inhibitor studies. Archives of Microbiology 102:261–273
    [Google Scholar]
  22. Schwartz A. C., Mertens B., Voss K. W., Hahn H. 1976; Inhibition of acetate and propionate formation upon aeration of resting cells of the anaerobic Propionibacterium shermanii: evidence of the Pasteur reaction. Zeitschrift für allgemeine Mikrobiologie 16:123–131
    [Google Scholar]
  23. Sone N. 1972; The redox reactions in propionic acid fermentation. I. Occurrence and nature of an electron transfer system in Propionibacterium arabinosum. Journal of Biochemistry 71:931–940
    [Google Scholar]
  24. De Vries W., Van Wyck-Kapteyn W. M. C., Stouthamer A. H. 1972; Influence of oxygen on growth, cytochrome synthesis and fermentation pattern in propionic acid bacteria. Journal of General Microbiology 71:515–524
    [Google Scholar]
  25. De Vries W., Van Wyck-Kapteyn W. M. C., Stouthamer A. H. 1973; Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria. Journal of General Microbiology 76:31–41
    [Google Scholar]
  26. Winterbourne C. C., Hawkins R. E., Brian M., Carrell R. W. 1975; The estimation of red cell superoxide dismutase activity. Journal of Laboratory and Clinical Medicine 85:337–341
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-102-2-223
Loading
/content/journal/micro/10.1099/00221287-102-2-223
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error