1887

Abstract

Fermentation studies using batch culture indicated that exopolysaccharide production by 11264 in a chemically defined medium increased under conditions of nitrogen limitation and excess carbon substrate at pH values above 6. The polysaccharide was formed from a variety of carbon substrates and its composition was not affected by the nature of the carbohydrate source. Polysaccharide formation did not increase in media containing small amounts of phosphate, and, as in secondary metabolite production, it started late in the exponential growth phase continuing maximally after growth had ceased. The efficiency of glucose conversion into exopolysaccharide was low.

Colorimetric, viscometric, and total carbon estimation techniques are described for determining exopolysaccharide levels in cell-free culture supernatants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-102-1-13
1977-09-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/102/1/mic-102-1-13.html?itemId=/content/journal/micro/10.1099/00221287-102-1-13&mimeType=html&fmt=ahah

References

  1. Brown M. R. W., Scott-Foster J. H., Clamp J. R. 1969; Composition of Pseudomonas aeruginosa slime. Biochemical Journal 112:521–525
    [Google Scholar]
  2. Catley B. J. 1971; Role of pH and nitrogen limitation in the elaboration of the extracellular polysaccharide pullulan by Pullularia pullulans. Applied Microbiology 22:650–654
    [Google Scholar]
  3. Corpe W. A. 1964; Factors influencing growth and polysaccharide formation by strains of Chromobacterium violaceum. Journal of Bacteriology 88:1433–1438
    [Google Scholar]
  4. Dische Z. 1962a; Colour reactions of hexoses. Methods in Carbohydrate Chemistry 1:488–494
    [Google Scholar]
  5. Dische Z. 1962b; Colour reactions of 6-deoxy-, 3-deoxy-and 3,6-dideoxyhexoses. Methods in Carbohydrate Chemistry 1:501–503
    [Google Scholar]
  6. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for the determination of sugars and related substances. Analytical Chemistry 28:350–356
    [Google Scholar]
  7. Dudman W. F. 1959; Cellulose production by Acetobacter acetigenum in defined medium. Journal of General Microbiology 21:327–337
    [Google Scholar]
  8. Duguid J. P., Wilkinson J. F. 1953; The influence of cultural conditions on polysaccharide production by Aerobacter aerogenes. Journal of General Microbiology 9:174–189
    [Google Scholar]
  9. Duguid J. P., Wilkinson J. F. 1954; Note on the influence of potassium deficiency upon production of polysaccharide by Aerobacter aerogenes. Journal of General Microbiology 11:71–73
    [Google Scholar]
  10. Eagon R. G. 1956; Studies on polysaccharide formation by Pseudomonas fluorescens. Canadian Journal of Microbiology 2:673–676
    [Google Scholar]
  11. Friedman T. E., Haugen G. E. 1943; Pyruvic acid. II. The determination of keto acids in blood and urine. Journal of Biological Chemistry 147:415–442
    [Google Scholar]
  12. Gogoleva E. V., Maksimov V. N., Grechush-Kina N. N., Egorov N. S. 1976; Optimisation of the medium and importance of some of its components for the biosynthesis of exopolysaccharide by Mycobacterium lacticolum. Mikro-biologiya 86:800–805
    [Google Scholar]
  13. Goto S., Enomoto S., Takahashi Y., Moto-Matsu R. 1971; Slime production by Pseudomonas aeruginosa. I. Conditions for slime production by the cellophane plate method. Japanese Journal of Microbiology 15:317–324
    [Google Scholar]
  14. Goto S., Murakawa T., Kuwahara S. 1973; Slime production by Pseudomonas aeruginosa. II. A new synthetic medium and conditions suitable for slime production by Pseudomonas aeruginosa. Japanese Journal of Microbiology 17:45–51
    [Google Scholar]
  15. Gray C. T., Wimpenny J. W. T., Hughes D. E., Mossman M. R. 1966; Regulation of metabolism in facultative bacteria. Structural and functional changes in Escherichia coli associated with shifts between the aerobic and anaerobic states. Biochimica et biophysica acta 117:22–32
    [Google Scholar]
  16. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  17. Mccomb E. A., Mccready R. M. 1957; Determination of acetyl in pectin and in acetylated carbohydrate polymers. Hydroxamic acid reaction. Analytical Chemistry 29:819–821
    [Google Scholar]
  18. Markovitz A., Sylvan S. 1962; Effect of sodium sulphate and magnesium sulphate on heteropolysaccharide synthesis in Gram-negative soil bacteria. Journal of Bacteriology 83:483–489
    [Google Scholar]
  19. Moraine R. A., Rogovin P. 1971; Xanthan biopolymer production at increased concentration by pH control. Biotechnology and Bioengineering 13:381–391
    [Google Scholar]
  20. Moraine R. A., Rogovin P. 1973; Kinetics of the xanthan fermentation. Biotechnology and Bioengineering 15:225–237
    [Google Scholar]
  21. Ozawa Y., Yamada K., Kobayashi H., Suzuki H. 1972; Production of polysaccharide from starch and identification of constituent sugars of the preparation. Agricultural and Biological Chemistry 36:2117–2122
    [Google Scholar]
  22. Palumbo S. A. 1972; Role of iron and sulphur in pigment and slime formation by Pseudomonas aeruginosa. Journal of Bacteriology 111:430–436
    [Google Scholar]
  23. Palumbo S. A. 1973; Influence of sulphite on growth, slime and fluorescent pigment production by Pseudomonas aeruginosa. Canadian Journal of Microbiology 19:505–511
    [Google Scholar]
  24. Pappagianis D., Kobayashi S. 1958; Production of extracellular polysaccharide in cultures of Coccidioides immitis. Mycologia 50:229–238
    [Google Scholar]
  25. Parsons A. B., Dugan P. R. 1971; Production of extracellular polysaccharide matrix by Zoogloea ramigera. Applied Microbiology 21:657–661
    [Google Scholar]
  26. Skujins J. J., Potgieter H. J., Alexander M. 1965; Dissolution of fungal cell walls by a streptomycete chitinase and β- (1 →3)-glucanase. Archives of Biochemistry and Biophysics 111:358–364
    [Google Scholar]
  27. Solorzano L. 1969; Determination of ammonia in natural waters by the phenol-hypochlorite method. Limnology and Oceanography 14:799–801
    [Google Scholar]
  28. Sutherland I. W. 1972; Bacterial exopolysaccharides. Advances in Microbial Physiology 8:143–213
    [Google Scholar]
  29. Unz R. F., Farrah S. R. 1976; Exopolymer production and flocculation by Zoogloea MP6. Applied and Environmental Microbiology 31:623–626
    [Google Scholar]
  30. Wilkinson J. F. 1958; Extracellular bacterial polysaccharides. Bacteriological Reviews 22:46–69
    [Google Scholar]
  31. Williams A. G. 1974 Extracellular polysaccharide production by a Gram-negative bacterial isolate Ph.D. thesis University of Wales;
    [Google Scholar]
  32. Williams A. G., Wimpenny J. W. T. 1976; Exopolysaccharide production by Pseudomonas PBI grown in batch and continuous culture. Effect of growth conditions. Journal of Applied Chemistry and Biotechnology 26:326–327
    [Google Scholar]
  33. Williams A. G., Wimpenny J.W-T., Lawson C. J. 1973; The production of an extracellular polysaccharide by a Pseudomonas-type microorganism. Journal of General Microbiology 77:xiii
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-102-1-13
Loading
/content/journal/micro/10.1099/00221287-102-1-13
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error