1887

Abstract

In aerobically and phototrophically growing cells of , glucose and fructose catabolism were studied by means of enzyme analysis, radiorespirometry and incorporation of specifically-labelled glucose and fructose into spheroidene fractions, into alanine and into valine. Bacteria grown on glucose or fructose possessed all the enzymes necessary for sugar catabolism via the Entner-Doudoroff pathway. Bacteria grown on fructose also contained an inducible 1-phosphofructokinase, indicating that fructose was degraded via fructose 1-phosphate. Fructose was catabolized via both the Embden-Meyerhof and Entner-Doudoroff pathways. The contribution of each pathway to fructose breakdown was influenced by the growth conditions: under phototrophic conditions fructose was catabolized predominantly via the Embden-Meyerhof pathway; under aerobic conditions it was catabolized mainly via the Entner-Doudoroff pathway. This change in the major fructose catabolic pathway was paralleled by fructose-1, 6-bisphosphate aldolase activity: the activity was high in phototrophically growing cells and low in aerobically growing cells. Glucose, on the other hand, was catabolized via the Entner-Doudoroff pathway under both phototrophic and aerobic conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-101-2-277
1977-08-01
2022-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/101/2/mic-101-2-277.html?itemId=/content/journal/micro/10.1099/00221287-101-2-277&mimeType=html&fmt=ahah

References

  1. Akagi J. M., Jackson G. 1967; Degradation of glucose by proliferating cells of Desulfotomaculum nigrificans. Applied Microbiology 15:1427–1430
    [Google Scholar]
  2. Andreesen J. R., Gottschalk G. 1969; The occurrence of a modified Entner-Doudoroff pathway in Clostridium aceticum. Archiv für Mikrobiologie 69:160–170
    [Google Scholar]
  3. Bender R., Gottschalk G. 1973; Purification and properties of d-gluconate dehydratase from Clostridium pasteurianum. European Journal of Biochemistry 40:309–321
    [Google Scholar]
  4. Blevins W. T., Feary T. W., Phtbbs P. V.JR 1975; 6-Phosphogluconate dehydratase deficiency in pleiotropic carbohydrate-negative mutant strains of Pseudomonas aeruginosa. Journal of Bacteriology 121:942–949
    [Google Scholar]
  5. Blumenthal H. J., Huettner C. F., Montiel F. A. 1974; Comparative aspects of glucose catabolism in Staphylococcus aureus and S. epidermidis. Annals of the New York Academy of Sciences 236:105–114
    [Google Scholar]
  6. Brown A. T., Wittenberger C. L. 1971; Mechanism for regulating the distribution of glucose carbon between the Embden-Meyerhof and hexose-monophosphate pathways in Streptococcus faecalis. Journal of Bacteriology 106:456–467
    [Google Scholar]
  7. Conrad R., Schlegel H. G. 1974; Different pathways for fructose and glucose utilization in Rhodopseudomonas capsulata and demonstration of i-phosphofructokinase in phototrophic bacteria. Biochimica et biophysica acta 358:221–225
    [Google Scholar]
  8. Conrad R., Schlegel H. G. 1977; Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata. Archives of Microbiology 112:39–48
    [Google Scholar]
  9. Dawson P. S. S., Westlake D. W. S. 1975; Changes in patterns of respiration and glucose utilization in Candida utilis during the cell cycle: some variations with growth rate. Canadian Journal of Microbiology 21:1013–1019
    [Google Scholar]
  10. Eimhjellen K. E., Liaaen-Jensen S. 1964; The biosynthesis of carotenoids in Rhodopseudomonas gelatinosa. Biochimica et biophysica acta 82:21–40
    [Google Scholar]
  11. Fraenkel D. G., Levisohn S. R. 1967; Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. Journal of Bacteriology 93:1571–1578
    [Google Scholar]
  12. Gottschalk G., Eberhardt U., Schlegel H. G. 1964; Verwertung von Fructose durch Hydrogenomonas H16 (I). Archiv für Mikrobiologie 48:95–108
    [Google Scholar]
  13. Hinks N. T., Mills S. C., Setchell B. P. 1966; A simple method for the determination of the specific activity of carbon dioxide in blood. Analytical Biochemistry 17:551–553
    [Google Scholar]
  14. Julian G. S., Bulla L. A.Jr 1971; Physiology of spore-forming bacteria associated with insects. IV. Glucose catabolism in Bacillus larvae. Journal of Bacteriology 108:828–834
    [Google Scholar]
  15. Kikuchi G., Saito Y., Motokawa Y. 1965; On cytochrome oxidase as the terminal oxidase of dark respiration of non-sulfur purple bacteria. Biochimica et biophysica acta 94:1–14
    [Google Scholar]
  16. Klemme J. H., Schlegel H. G. 1969; Untersuchungen zum Cytochrom-Oxidase-System aus anaerob im Licht und aerob im Dunkeln gewach- senen Zellen von Rhodopseudomonas capsulata. Archiv für Mikrobiologie 68:326–354
    [Google Scholar]
  17. Lascelles J. 1960; The formation of ribulose-1,5-diphosphate carboxylase by growing cultures of Athiorhodaceae. Journal of General Microbiology 23:499–510
    [Google Scholar]
  18. Laughon B. E., Krieg N. R. 1974; Sugar catabolism in Aquaspirillum gracile. Journal of Bacteriology 119:691–697
    [Google Scholar]
  19. Liaaen-Jensen S. 1962 The Constitution of some Bacterial Carotenoids and their Bearing on Biosynthetic Problems Det KGL, Norske Videnskabers Selskabs Skrifter 8 Trondheim, Norway:
    [Google Scholar]
  20. Lynch T. J., Henney H. R.Jr 1973; Carbohydrate metabolism during differentiation (sclerotization) of the myxomycete Physarum flavicomum. Archiv für Mikrobiologie 90:189–198
    [Google Scholar]
  21. Morse S. A., Stein S., Hines J. 1974; Glucose metabolism in Neisseria gonorrhoeae. Journal of Bacteriology 120:702–714
    [Google Scholar]
  22. Ohmann E., Rindt K. P., Borriss R. 1969; Glucose-6-phosphat-Dehydrogenase in autotro- phen Mikroorganismen. I. Die Regulation der Synthese der Glucose-6-phosphat-Dehydrogenase in Euglena gracilis and Rhodopseudomonas spheroides in Abhangigkeit von den Kulturbedingungen. Zeitschrift für allgemeine Mikrobiologie 9:557–564
    [Google Scholar]
  23. Orlowski M., Goldman M. 1975; Inactivation of glucose 6-phosphate dehydrogenase during germination and outgrowth of Bacillus cereus T endospores. Biochemical Journal 148:259–268
    [Google Scholar]
  24. Palumbo S. A., Witlev L. D. 1969; The influence of temperature on the pathways of glucose catabolism in Pseudomonas fluorescens. Canadian Journal of Microbiology 15:995–1001
    [Google Scholar]
  25. Pataki G. 1966 Dünnschichtchromatographie in der Aminosäure- und Peptid-Chemie. Berlin: Walter de Gruyter & Co;
    [Google Scholar]
  26. Phibbs P. V., Mcnamee C. 1976; Evidence against an oxidative hexose monophosphate pathway in the fluorescent group of Pseudomonas. Abstracts of the Annual Meeting of the American Society for Microbiology p. 167 Washington: ASM;
    [Google Scholar]
  27. Saier M. H.Jr Feucht B. U., Roseman S. 1971; Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria. Journal of Biological Chemistry 246:7819–7821
    [Google Scholar]
  28. Sawyer M. H., Baumann P., Baumann L., Berman S. M., Cánovas J. L., Berman R. H. 1977a; Pathways of d-fructose catabolism in species of Pseudomonas. Archives of Microbiology 112:49–55
    [Google Scholar]
  29. Sawyer M. H., Baumann P., Baumann L. 1977b; Pathways of d-fructose and d-glucose catabolism in marine species of Alcaligenes, Pseudomonas marina and Alteromonas communis. Archives of Microbiology 112:169–172
    [Google Scholar]
  30. Schedel M., Klemme J. H., Schlegel H. G. 1975; Regulation of C3-enzymes in facultative phototrophic bacteria. The cold-labile pyruvate kinase of Rhodopseudomonas spheroides. Archives of Microbiology 103:237–245
    [Google Scholar]
  31. Schmidt K., Pfennig N., Liaaen-Jensen S. 1965; Carotenoids of Thiorhodaceae. IV. The carotenoid composition of 25 pure isolates. Archiv für Mikrobiologie 52:132–146
    [Google Scholar]
  32. Snyder M. A., Kaczorowski G. J., Barnes E. M.Jr Walsh C. 1976; Inactivation of the phosphenolpyruvate-dependent phosphotransferase system in various species of bacteria by vinylglycolic acid. Journal of Bacteriology 127:671–673
    [Google Scholar]
  33. Szymona M., Doudoroff M. 1960; Carbohydrate metabolism in Rhodopseudomonas spheroides. Journal of General Microbiology 22:167–183
    [Google Scholar]
  34. Tabita R., Lundgren D. G. 1971; Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans. Journal of Bacteriology 108:334–342
    [Google Scholar]
  35. Taussky H. H., Shorr E. 1953; A microcolorimetric method for the determination of inorganic phosphorus. Journal of Biological Chemistry 202:675–685
    [Google Scholar]
  36. Thore A., Keister D. L., San Pietro A. 1969; Studies on the respiratory system of aerobically (dark) and anaerobically (light) grown Rhodospirillum rubrum. Archiv für Mikrobiologie 67:378–396
    [Google Scholar]
  37. Wang C. H., Krackov J. K. 1962; The catabolic fate of glucose in Bacillus subtilis. Journal of Biological Chemistry 237:3614–3622
    [Google Scholar]
  38. Weissbach A., Hurwitz J. 1959; The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. Journal of Biological Chemistry 234:705–709
    [Google Scholar]
  39. Willard J. M., Schulman M., Gibbs M. 1965; Aldolase in Anacystis nidulans and Rhodopseudomonas spheroides. Nature; London: 206195
    [Google Scholar]
  40. Wolfson E. B., Sobel M. E., Blanco R., Krulwich T. A. 1974; Pathways of d-fructose transport in Arthrobacter pyridinolis. Archives of Biochemistry and Biophysics 160:440–444
    [Google Scholar]
  41. Wood A. P., Kelly D. P. 1976; Triple mechanism for glucose oxidation in Thiobacillus A2. Proceedings of the Society for General Microbiology 4:23–24
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-101-2-277
Loading
/content/journal/micro/10.1099/00221287-101-2-277
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error