- Volume 4, Issue 6, 2018
Volume 4, Issue 6, 2018
- Research Article
-
- Genomic Methodologies
- Novel Phylogenetic Methods
-
-
Using glycolysis enzyme sequences to inform Lactobacillus phylogeny
More LessThe genus Lactobacillus encompasses a diversity of species that occur widely in nature and encode a plethora of metabolic pathways reflecting their adaptation to various ecological niches, including humans, animals, plants and food products. Accordingly, their functional attributes have been exploited industrially and several strains are commonly formulated as probiotics or starter cultures in the food industry. Although divergent evolutionary processes have yielded the acquisition and evolution of specialized functionalities, all Lactobacillus species share a small set of core metabolic properties, including the glycolysis pathway. Thus, the sequences of glycolytic enzymes afford a means to establish phylogenetic groups with the potential to discern species that are too closely related from a 16S rRNA standpoint. Here, we identified and extracted glycolysis enzyme sequences from 52 species, and carried out individual and concatenated phylogenetic analyses. We show that a glycolysis-based phylogenetic tree can robustly segregate lactobacilli into distinct clusters and discern very closely related species. We also compare and contrast evolutionary patterns with genome-wide features and transcriptomic patterns, reflecting genomic drift trends. Overall, results suggest that glycolytic enzymes provide valuable phylogenetic insights and may constitute practical targets for evolutionary studies.
-
- Microbe-Niche Interactions
- Mutualism, Commensalism and Parasitism
-
-
The comparative genomics of Bifidobacterium callitrichos reflects dietary carbohydrate utilization within the common marmoset gut
More LessBifidobacterium is a diverse genus of anaerobic, saccharolytic bacteria that colonize many animals, notably humans and other mammals. The presence of these bacteria in the gastrointestinal tract represents a potential coevolution between the gut microbiome and its mammalian host mediated by diet. To study the relationship between bifidobacterial gut symbionts and host nutrition, we analyzed the genome of two bifidobacteria strains isolated from the feces of a common marmoset (Callithrix jacchus), a primate species studied for its ability to subsist on host-indigestible carbohydrates. Whole genome sequencing identified these isolates as unique strains of Bifidobacterium callitrichos. All three strains, including these isolates and the previously described type strain, contain genes that may enable utilization of marmoset dietary substrates. These include genes predicted to contribute to galactose, arabinose, and trehalose metabolic pathways. In addition, significant genomic differences between strains suggest that bifidobacteria possess distinct roles in carbohydrate metabolism within the same host. Thus, bifidobacteria utilize dietary components specific to their host, both humans and non-human primates alike. Comparative genomics suggests conservation of possible coevolutionary relationships within the primate clade.
-
- Microbial Evolution and Epidemiology
- Communicable Disease Genomics
-
-
Genetic analysis of invasive Escherichia coli in Scotland reveals determinants of healthcare-associated versus community-acquired infections
More LessBacteraemia caused by Escherichia coli is a growing problem with a significant mortality. The factors that influence the acquisition and outcome of these infections are not clear. Here, we have linked detailed genetic data from the whole-genome sequencing of 162 bacteraemic isolates collected in Scotland, UK, in 2013–2015, with clinical data in order to delineate bacterial and host factors that influence the acquisition in hospital or the community, outcome and antibiotic resistance. We identified four major sequence types (STs) in these isolates: ST131, ST69, ST73 and ST95. Nearly 50 % of the bacteraemic isolates had a urinary origin. ST69 was genetically distinct from the other STs, with significantly less sharing of accessory genes and with a distinct plasmid population. Virulence genes were widespread and diversely distributed between the dominant STs. ST131 was significantly associated with hospital-associated infections (HAIs), and ST69 with those from the community. However, there was no association of ST with outcome, although patients with HAI had a higher immediate mortality compared to those with community-associated infections (CAIs). Genome-wide association studies revealed genes involved in antibiotic persistence as significantly associated with HAIs and those encoding elements of a type VI secretion system with CAIs. Antibiotic resistance was common, and there were networks of correlated resistance genes and phenotypic antibiotic resistance. This study has revealed the complex interactions between the genotype of E. coli and its ability to cause bacteraemia, and some of the determinants influencing hospital or community acquisition. In part, these are shaped by antibiotic usage, but strain-specific factors are also important.
-
- Population Genomics
-
-
SuperDCA for genome-wide epistasis analysis
The potential for genome-wide modelling of epistasis has recently surfaced given the possibility of sequencing densely sampled populations and the emerging families of statistical interaction models. Direct coupling analysis (DCA) has previously been shown to yield valuable predictions for single protein structures, and has recently been extended to genome-wide analysis of bacteria, identifying novel interactions in the co-evolution between resistance, virulence and core genome elements. However, earlier computational DCA methods have not been scalable to enable model fitting simultaneously to 104–105 polymorphisms, representing the amount of core genomic variation observed in analyses of many bacterial species. Here, we introduce a novel inference method (SuperDCA) that employs a new scoring principle, efficient parallelization, optimization and filtering on phylogenetic information to achieve scalability for up to 105 polymorphisms. Using two large population samples of Streptococcus pneumoniae, we demonstrate the ability of SuperDCA to make additional significant biological findings about this major human pathogen. We also show that our method can uncover signals of selection that are not detectable by genome-wide association analysis, even though our analysis does not require phenotypic measurements. SuperDCA, thus, holds considerable potential in building understanding about numerous organisms at a systems biological level.
-
- Systems Microbiology
- Transcriptomics, Proteomics, Networks
-
-
The mechanisms that regulate Vibrio parahaemolyticus virulence gene expression differ between pathotypes
More LessMost Vibrio parahaemolyticus isolates found in marine environments are non-pathogenic; however, certain lineages have acquired genomic pathogenicity islands (PAIs) that enable these isolates to cause human illness. The V. parahaemolyticus PAI contains one or both of two toxins: thermostable direct haemolysin (TDH) or TDH-related haemolysin (TRH) and type III secretion system 2 (T3SS2). Recently, a few V. parahaemolyticus isolates that do not have this PAI were obtained from clinical samples, and there has been interest in determining whether these isolates possess novel virulence factors. In this investigation, we have selected four V. parahaemolyticus isolates: a canonical pathogenic strain containing TDH, TRH and T3SS2; two strains from clinical cases which do not contain a PAI; and an environmental isolate which also does not contain a PAI. For each isolate, we analyzed differential gene expression after crude bile exposure. Several enteric bacterial pathogens are known to use bile as a signal to enhance virulence gene expression. We have shown that in the tdh-positive trh-positive pathotype gene virulence gene expression was not up-regulated in response to crude bile, strongly indicating that the current dogma of virulence gene regulation in V. parahaemolyticus needs to be revisited and separately investigated for each pathotype. In addition, we have created a list of genes of interest that were up-regulated in the non-canonical pathotypes which may contribute to virulence in these isolates.
-
- Erratum
-