1887

Abstract

Bifidobacterium is a diverse genus of anaerobic, saccharolytic bacteria that colonize many animals, notably humans and other mammals. The presence of these bacteria in the gastrointestinal tract represents a potential coevolution between the gut microbiome and its mammalian host mediated by diet. To study the relationship between bifidobacterial gut symbionts and host nutrition, we analyzed the genome of two bifidobacteria strains isolated from the feces of a common marmoset (Callithrix jacchus), a primate species studied for its ability to subsist on host-indigestible carbohydrates. Whole genome sequencing identified these isolates as unique strains of Bifidobacterium callitrichos. All three strains, including these isolates and the previously described type strain, contain genes that may enable utilization of marmoset dietary substrates. These include genes predicted to contribute to galactose, arabinose, and trehalose metabolic pathways. In addition, significant genomic differences between strains suggest that bifidobacteria possess distinct roles in carbohydrate metabolism within the same host. Thus, bifidobacteria utilize dietary components specific to their host, both humans and non-human primates alike. Comparative genomics suggests conservation of possible coevolutionary relationships within the primate clade.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000183
2018-06-15
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/6/mgen000183.html?itemId=/content/journal/mgen/10.1099/mgen.0.000183&mimeType=html&fmt=ahah

References

  1. Dhanashree SR, Rajashekharan S, Krishnaswamy B, Kammara R. Bifid shape is intrinsic to Bifidobacterium adolescentis. Front Microbiol 2017;8:478 [CrossRef][PubMed]
    [Google Scholar]
  2. Lamendella R, Santo Domingo JW, Kelty C, Oerther DB. Bifidobacteria in feces and environmental waters. Appl Environ Microbiol 2008;74:575–584 [CrossRef][PubMed]
    [Google Scholar]
  3. Turroni F, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol 2011;149:37–44 [CrossRef]
    [Google Scholar]
  4. Killer J, Kopecný J, Mrázek J, Rada V, Benada O et al. Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2009;59:2020–2024 [CrossRef][PubMed]
    [Google Scholar]
  5. Killer J, Kopečný J, Mrázek J, Koppová I, Havlík J et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2011;61:1315–1321 [CrossRef][PubMed]
    [Google Scholar]
  6. Fushinobu S. Unique sugar metabolic pathways of bifidobacteria. Biosci Biotechnol Biochem 2010;74:2374–2384 [CrossRef][PubMed]
    [Google Scholar]
  7. Turroni F, Milani C, Duranti S, Mahony J, van Sinderen D et al. Glycan utilization and cross-feeding activities by bifidobacteria. Trends Microbiol 2018;26:339–350 [CrossRef][PubMed]
    [Google Scholar]
  8. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep 2015;5:15782 [CrossRef]
    [Google Scholar]
  9. Schnell MA, Karmirantzou M, Snel B, Vilanova D, Berger B et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci 2002;99:6
    [Google Scholar]
  10. Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L et al. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol 2016;82:980–991 [CrossRef][PubMed]
    [Google Scholar]
  11. Lugli GA, Milani C, Turroni F, Duranti S, Mancabelli L et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genomics 2017;18:568 [CrossRef][PubMed]
    [Google Scholar]
  12. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA 2008;105:18964–18969 [CrossRef][PubMed]
    [Google Scholar]
  13. Sela DA, Mills DA. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 2010;18:298–307 [CrossRef]
    [Google Scholar]
  14. Sela DA. Bifidobacterial utilization of human milk oligosaccharides. Int J Food Microbiol 2011;149:58–64 [CrossRef][PubMed]
    [Google Scholar]
  15. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al. Evolution of mammals and their gut microbes. Science 2008;320:1647–1651 [CrossRef][PubMed]
    [Google Scholar]
  16. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011;332:970–974 [CrossRef][PubMed]
    [Google Scholar]
  17. Moeller AH, Li Y, Mpoudi Ngole E, Ahuka-Mundeke S, Lonsdorf EV et al. Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci USA 2014;111:16431–16435 [CrossRef][PubMed]
    [Google Scholar]
  18. Michelini S, Modesto M, Oki K, Stenico V, Stefanini I et al. Isolation and identification of cultivable Bifidobacterium spp. from the faeces of 5 baby common marmosets (Callithrix jacchus L.). Anaerobe 2015;33:101–104 [CrossRef]
    [Google Scholar]
  19. Endo A, Futagawa-Endo Y, Schumann P, Pukall R, Dicks LMT. Bifidobacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacterium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifidobacterium biavatii sp. nov. isolated from faeces of common marmoset (Callithrix jacchus) and red-handed tamarin (Saguinus midas). Syst Appl Microbiol 2012;35:92–97 [CrossRef]
    [Google Scholar]
  20. Michelini S, Oki K, Yanokura E, Shimakawa Y, Modesto M et al. Bifidobacterium myosotis sp. nov., Bifidobacterium tissieri sp. nov. and Bifidobacterium hapali sp. nov., isolated from faeces of baby common marmosets (Callithrix jacchus L.). Int J Syst Evol Microbiol 2016;66:255–265 [CrossRef][PubMed]
    [Google Scholar]
  21. Modesto M, Michelini S, Stefanini I, Ferrara A, Tacconi S et al. Bifidobacterium aesculapii sp. nov., from the faeces of the baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 2014;64:2819–2827 [CrossRef]
    [Google Scholar]
  22. Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol 2014;80:6290–6302 [CrossRef][PubMed]
    [Google Scholar]
  23. Modesto M, Michelini S, Stefanini I, Sandri C, Spiezio C et al. Bifidobacterium lemurum sp. nov., from faeces of the ring-tailed lemur (Lemur catta). Int J Syst Evol Microbiol 2015;65:1726–1734 [CrossRef][PubMed]
    [Google Scholar]
  24. Tsuchida S, Takahashi S, Nguema PPM, Fujita S, Kitahara M et al. Bifidobacterium moukalabense sp. nov., isolated from the faeces of wild west lowland gorilla (Gorilla gorilla gorilla). Int J Syst Evol Microbiol 2014;64:449–455 [CrossRef]
    [Google Scholar]
  25. Michelini S, Modesto M, Filippini G, Spiezio C, Sandri C et al. Bifidobacterium aerophilum sp. nov., Bifidobacterium avesanii sp. nov. and Bifidobacterium ramosum sp. nov.: three novel taxa from the faeces of cotton-top tamarin (Saguinus oedipus L.). Syst Appl Microbiol 2016;39:229–236 [CrossRef][PubMed]
    [Google Scholar]
  26. Michelini S, Modesto M, Pisi AM, Filippini G, Sandri C et al. Bifidobacterium eulemuris sp. nov., isolated from faeces of black lemurs (Eulemur macaco). Int J Syst Evol Microbiol 2016;66:1567–1576 [CrossRef][PubMed]
    [Google Scholar]
  27. Modesto M, Michelini S, Sansosti MC, De Filippo C, Cavalieri D et al. Bifidobacterium callitrichidarum sp. nov. from the faeces of the emperor tamarin (Saguinus imperator). Int J Syst Evol Microbiol 2018;68:141–148 [CrossRef][PubMed]
    [Google Scholar]
  28. Power ML, Oftedal OT. Differences among captive callitrichids in the digestive responses to dietary gum. Am J Primatol 1996;40:131–144 [CrossRef]
    [Google Scholar]
  29. Rylands AB. Exudate-eating and tree-gouging by marmosets (Callitrichidae, Primates). In Chadwick AC, Sutton SL. (editors) Tropical Rain Forest: the Leeds Symposium 1984 Leeds: Leeds Philosophicaland Literary Society; pp.155–168
    [Google Scholar]
  30. Garber PA. Vertical clinging, small body size, and the evolution of feeding adaptations in the Callitrichinae. Am J Phys Anthropol 1992;88:469–482 [CrossRef][PubMed]
    [Google Scholar]
  31. Power ML, Myers EW. Digestion in the common marmoset (Callithrix jacchus), a gummivore-frugivore. Am J Primatol 2009;71:957–963 [CrossRef][PubMed]
    [Google Scholar]
  32. Power ML. Nutritional and digestive challenges to being a gum-feeding primate. In The Evolution of Exudativory in Primates New York: Springer; 2010; pp.25–44
    [Google Scholar]
  33. Cabana F, Dierenfeld ES, Wirdateti, Donati G, Nekaris KAI. Exploiting a readily available but hard to digest resource: a review of exudativorous mammals identified thus far and how they cope in captivity. Integr Zool 2018;13:94–111 [CrossRef][PubMed]
    [Google Scholar]
  34. Paula R, Budd PM, Rodrigues JF. Characterization of Anadenanthera macrocarpa exudate polysaccharide. Polym Int 1997;44:55–60
    [Google Scholar]
  35. Francisco TM, Couto DR, Zanuncio JC, Serrão JE, Silva IO et al. Vegetable exudates as food for Callithrix spp. (Callitrichidae): exploratory patterns. PLoS One 2014;9:e112321 [CrossRef][PubMed]
    [Google Scholar]
  36. Haruna S, Aliyu BS, Bala A. Plant gum exudates (Karau) and mucilages, their biological sources, properties, uses and potential applications: a review. Bayero J Pure Appl Sci 2016;9:159–165 [CrossRef]
    [Google Scholar]
  37. McWhorter TJ, Karasov WH. Paracellular nutrient absorption in a gum-feeding new world primate, the common marmoset Callithrix jacchus. Am J Primatol 2007;69:1399–1411 [CrossRef][PubMed]
    [Google Scholar]
  38. Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 2010;26:266–267 [CrossRef]
    [Google Scholar]
  39. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335–336 [CrossRef][PubMed]
    [Google Scholar]
  40. Desantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72:5069–5072 [CrossRef][PubMed]
    [Google Scholar]
  41. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26:2460–2461 [CrossRef]
    [Google Scholar]
  42. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73:5261–5267 [CrossRef][PubMed]
    [Google Scholar]
  43. Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A et al. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 2009;75:1534–1545 [CrossRef][PubMed]
    [Google Scholar]
  44. Satokari RM, Vaughan EE, Akkermans AD, Saarela M, de Vos WM. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 2001;67:504–513 [CrossRef][PubMed]
    [Google Scholar]
  45. Kok RG, De Waal A, Schut F, Welling GW, Weenk G et al. Specific detection and analysis of a probiotic Bifidobacterium strain in infant feces. Appl Environ Microbiol 1996;62:3668–3672
    [Google Scholar]
  46. Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR et al. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 1995;61:3069–3075
    [Google Scholar]
  47. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  48. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  49. Orban JI, Patterson JA. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J Microbiol Methods 2000;40:221–224 [CrossRef][PubMed]
    [Google Scholar]
  50. Yin X, Chambers JR, Barlow K, Park AS, Wheatcroft R. The gene encoding xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (xfp) is conserved among Bifidobacterium species within a more variable region of the genome and both are useful for strain identification. FEMS Microbiol Lett 2005;246:251–257 [CrossRef][PubMed]
    [Google Scholar]
  51. Bogorad IW, Lin T-S, Liao JC. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 2013;502:693–697 [CrossRef]
    [Google Scholar]
  52. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling genomes and Mini-Metagenomes from Highly Chimeric Reads 2013; pp.158–170
    [Google Scholar]
  53. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016;59:783–791 [CrossRef]
    [Google Scholar]
  54. Eddy S. 2010; HMMER3: a new generation of sequence homology search software. http://hmmer.janelia.org
  55. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef]
    [Google Scholar]
  56. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540–552 [CrossRef][PubMed]
    [Google Scholar]
  57. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007;56:564–577 [CrossRef][PubMed]
    [Google Scholar]
  58. Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Richter RA et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. Isme J 2012;6:1186–1199 [CrossRef][PubMed]
    [Google Scholar]
  59. Ncbi RC. Database resources of the national center for biotechnology information. Nucleic Acids Res 2017;45:D12
    [Google Scholar]
  60. Rambaut A. FigTree v1. 4. Molecular Evolution, Phylogenetics and Epidemiology Edinburgh, UK: University of Edinburgh, Institute of Evolutionary Biology; 2012
    [Google Scholar]
  61. Robinson O, Dylus D, Dessimoz C. Phylo.io: interactive viewing and comparison of large phylogenetic trees on the web. Mol Biol Evol 2016;33:2163–2166 [CrossRef][PubMed]
    [Google Scholar]
  62. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  63. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42:D206–D214 [CrossRef]
    [Google Scholar]
  64. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015;5:8365 [CrossRef][PubMed]
    [Google Scholar]
  65. Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 2017;45:D507–D516 [CrossRef][PubMed]
    [Google Scholar]
  66. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016;428:726–731 [CrossRef][PubMed]
    [Google Scholar]
  67. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017;45:D353–D361 [CrossRef]
    [Google Scholar]
  68. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016;44:D457–D462 [CrossRef]
    [Google Scholar]
  69. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27–30 [CrossRef][PubMed]
    [Google Scholar]
  70. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014;42:D490–D495 [CrossRef][PubMed]
    [Google Scholar]
  71. Yin Y, Mao X, Yang J, Chen X, Mao F et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2012;40:W445–W451 [CrossRef]
    [Google Scholar]
  72. Oliveros JC. VENNY. An interactive tool for comparing lists with venn diagrams. 2007
  73. Ny Y, Wagner JR, Laird MR, Melli G, Rey S et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010;26:1608–1615
    [Google Scholar]
  74. Schaumburg F, Dieckmann R, Schmidt-Bräkling T, Becker K, Idelevich EA. First description of an Anaerobiospirillum succiniciproducens prosthetic joint infection. New Microbes New Infect 2017;18:1–2 [CrossRef][PubMed]
    [Google Scholar]
  75. Hariharan H, Hariharan SH. Zoonotic bacteria associated with cats. Vet Med Open J 2017;2:68–75 [CrossRef]
    [Google Scholar]
  76. Moraes SR, Gonçalves RB, Mouton C, Seldin L, Ferreira MC et al. Use of rep-PCR to define genetic relatedness among Bacteroides fragilis strains. J Med Microbiol 2000;49:279–284 [CrossRef][PubMed]
    [Google Scholar]
  77. Almeida FS, Nakano V, Avila-Campos MJ. Occurrence of enterotoxigenic and nonenterotoxigenic Bacteroides fragilis in calves and evaluation of their antimicrobial susceptibility. FEMS Microbiol Lett 2007;272:15–21 [CrossRef]
    [Google Scholar]
  78. Wu F, Guo X, Zhang J, Zhang M, Ou Z et al. Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp Ther Med 2017;14:3122–3126 [CrossRef]
    [Google Scholar]
  79. Kuang YS, Lu JH, Li SH, Li JH, Yuan MY et al. Connections between the human gut microbiome and gestational diabetes mellitus. Gigascience 2017;6:1–12 [CrossRef][PubMed]
    [Google Scholar]
  80. Chiu CM, Huang WC, Weng SL, Tseng HC, Liang C et al. Systematic analysis of the association between gut flora and obesity through high-throughput sequencing and bioinformatics approaches. Biomed Res Int 2014;2014:1–10 [CrossRef][PubMed]
    [Google Scholar]
  81. Lugli GA, Milani C, Turroni F, Duranti S, Ferrario C et al. Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl Environ Microbiol 2014;80:6383–6394 [CrossRef][PubMed]
    [Google Scholar]
  82. Sun Z, Zhang W, Guo C, Yang X, Liu W et al. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: a snapshot of its genetic diversity and evolution. PLoS One 2015;10:e0117912 [CrossRef][PubMed]
    [Google Scholar]
  83. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  84. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43:6761–6771 [CrossRef]
    [Google Scholar]
  85. Turroni F, Strati F, Foroni E, Serafini F, Duranti S et al. Analysis of predicted carbohydrate transport systems encoded by Bifidobacterium bifidum PRL2010. Appl Environ Microbiol 2012;78:5002–5012 [CrossRef][PubMed]
    [Google Scholar]
  86. Khoroshkin MS, Leyn SA, van Sinderen D, Rodionov DA. Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus. Front Microbiol 2016;7:120 [CrossRef][PubMed]
    [Google Scholar]
  87. Gilad O, Svensson B, Viborg AH, Stuer-Lauridsen B, Jacobsen S. The extracellular proteome of Bifidobacterium animalis subsp. lactis BB-12 reveals proteins with putative roles in probiotic effects. Proteomics 2011;11:2503–2514 [CrossRef][PubMed]
    [Google Scholar]
  88. Turroni F, Milani C, van Sinderen D, Ventura M. Genetic strategies for mucin metabolism in Bifidobacterium bifidum PRL2010: an example of possible human-microbe co-evolution. Gut Microbes 2011;2:183–189 [CrossRef][PubMed]
    [Google Scholar]
  89. Arrese EL, Soulages JL. Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 2010;55:207–225 [CrossRef][PubMed]
    [Google Scholar]
  90. Bottacini F, O'Connell Motherway M, Kuczynski J, O'Connell KJ, Serafini F et al. Comparative genomics of the Bifidobacterium breve taxon. BMC Genomics 2014;15:170 [CrossRef][PubMed]
    [Google Scholar]
  91. Vollmer W, Blanot D, De Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol Rev 2008;32:149–167 [CrossRef]
    [Google Scholar]
  92. Garrido D, Ruiz-Moyano S, Mills DA. Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis. Anaerobe 2012;18:430–435 [CrossRef][PubMed]
    [Google Scholar]
  93. Nishimoto M, Kitaoka M. The complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum: identification of N-acetylhexosamine 1-kinase. Appl Environ Microbiol 2007;73:6444–6449
    [Google Scholar]
  94. J-z X, Takahashi S, Nishimoto M, Odamaki T, Yaeshima T et al. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol 2010;76:54–59
    [Google Scholar]
  95. Wada J, Suzuki R, Fushinobu S, Kitaoka M, Wakagi T et al. Purification, crystallization and preliminary X-ray analysis of the galacto-N-biose-/lacto-N-biose I-binding protein (GL-BP) of the ABC transporter from Bifidobacterium longum JCM1217. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007;63:751–753 [CrossRef][PubMed]
    [Google Scholar]
  96. Nishimoto M, Kitaoka M. Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl Environ Microbiol 2007;73:6444–6449 [CrossRef][PubMed]
    [Google Scholar]
  97. Egan M, O'Connell Motherway M, Ventura M, van Sinderen D. Metabolism of sialic acid by Bifidobacterium breve UCC2003. Appl Environ Microbiol 2014;80:4414–4426 [CrossRef][PubMed]
    [Google Scholar]
  98. Sánchez-Carrón G, García-García MI, López-Rodríguez AB, Jiménez-García S, Sola-Carvajal A et al. Molecular characterization of a novel N-acetylneuraminate lyase from Lactobacillus plantarum WCFS1. Appl Environ Microbiol 2011;77:2471–2478 [CrossRef][PubMed]
    [Google Scholar]
  99. Tao N, Wu S, Kim J, An HJ, Hinde K et al. Evolutionary glycomics: characterization of milk oligosaccharides in primates. J Proteome Res 2011;10:1548–1557 [CrossRef][PubMed]
    [Google Scholar]
  100. Power ML, Oftedal OT, Tardif SD. Does the milk of callitrichid monkeys differ from that of larger anthropoids?. Am J Primatol 2002;56:117–127 [CrossRef]
    [Google Scholar]
  101. Ward JM, Buslov AM, Vallender EJ. Twinning and survivorship of captive common marmosets (Callithrix jacchus) and cotton-top tamarins (Saguinus oedipus). J Am Assoc Lab Anim Sci 2014;53:7–11
    [Google Scholar]
  102. Ross AC, Porter LM, Power ML, Sodaro V. Maternal care and infant development in Callimico goeldii and Callithrix jacchus. Primates 2010;51:315–325 [CrossRef]
    [Google Scholar]
  103. Francisco TM, Lopes-Mattos KL, Picoli EA, Couto DR, Oliveira JA et al. Feeding habits of marmosets: a case study of bark anatomy and chemical composition of Anadenanthera peregrina gum. Am J Primatol 2017;79:1–9 [CrossRef][PubMed]
    [Google Scholar]
  104. Vinyard CJ, Wall CE, Williams SH, Mork AL, Armfield BA et al. The evolutionary morphology of tree gouging in marmosets. In The Smallest Anthropoids USA: Springer; 2009; pp.395–409
    [Google Scholar]
  105. Amann RI, Ludwig W, Schleifer K-H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995;59:143–169
    [Google Scholar]
  106. Bailey MT, Coe CL. Intestinal microbial patterns of the common marmoset and rhesus macaque. Comp Biochem Physiol A Mol Integr Physiol 2002;133:379–388 [CrossRef][PubMed]
    [Google Scholar]
  107. de Mello MF, Monteiro AB, Fonseca EC, Pissinatti A, Ferreira AM. Identification of Helicobacter sp. in gastric mucosa from captive marmosets (Callithrix sp.; callitrichidae, primates). Am J Primatol 2005;66:111–118 [CrossRef][PubMed]
    [Google Scholar]
  108. Hayashimoto N, Morita H, Inoue T, Yasuda M, Yamamoto M et al. Draft genome sequence of enteropathogenic Escherichia coli, isolated from the bloody stool sample of a common marmoset (Callithrix jacchus). Genome Announc 2015;3:e01161-15 [CrossRef][PubMed]
    [Google Scholar]
  109. Yamazaki Y, Kawarai S, Morita H, Kikusui T, Iriki A. Faecal transplantation for the treatment of Clostridium difficile infection in a marmoset. BMC Vet Res 2017;13:150 [CrossRef][PubMed]
    [Google Scholar]
  110. Endo A, Futagawa-Endo Y, Dicks LM. Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores. Anaerobe 2010;16:590–596 [CrossRef][PubMed]
    [Google Scholar]
  111. Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM et al. Captivity humanizes the primate microbiome. Proc Natl Acad Sci USA 2016;113:10376–10381 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000183
Loading
/content/journal/mgen/10.1099/mgen.0.000183
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error