1887

Abstract

has been isolated from diseased cats and horses, but to date only a single fully assembled genome of this species, of an isolate from a horse, has been characterized. This study aimed to characterize and compare the completely assembled genomes of four clinical isolates of from three domestic cats, assembled with the aid of short- and long-read sequencing methods. The completed genomes encoded a median of 759 ORFs (range 743–777) and had a median average nucleotide identity of 98.2 % with the genome of the available equid origin reference strain. Comparative genomic analysis revealed the occurrence of multiple horizontal gene transfer events and significant genome reassortment. This had resulted in the acquisition or loss of numerous genes within the Australian felid isolate genomes, encoding putative proteins involved in DNA transfer, metabolism, DNA replication, host cell interaction and restriction modification systems. Additionally, a novel mycoplasma phage was detected in one Australian felid isolate by genomic analysis and visualized using cryo-transmission electron microscopy. This study has highlighted the complex genomic dynamics in different host environments. Furthermore, the sequences obtained in this work will enable the development of new diagnostic tools, and identification of future infection control and treatment options for the respiratory disease complex in cats.

Funding
This study was supported by the:
  • Feline Health Research Fund
    • Principle Award Recipient: PaolaK Vaz
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001227
2024-03-28
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/3/mgen001227.html?itemId=/content/journal/mgen/10.1099/mgen.0.001227&mimeType=html&fmt=ahah

References

  1. Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR et al. Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 2006; 103:425–430 [View Article] [PubMed]
    [Google Scholar]
  2. Woese CR, Stackebrandt E, Ludwig W. What are mycoplasmas: the relationship of tempo and mode in bacterial evolution. J Mol Evol 1985; 21:305–316 [View Article]
    [Google Scholar]
  3. Fadiel A, Eichenbaum KD, El Semary N, Epperson B. Mycoplasma genomics: tailoring the genome for minimal life requirements through reductive evolution. Front Biosci 2007; 12:2020–2028 [View Article]
    [Google Scholar]
  4. Rocha EPC, Blanchard A. Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res 2002; 30:2031–2042 [View Article] [PubMed]
    [Google Scholar]
  5. Shil PK, Wawegama NK, Browning GF, Noormohammadi AH, Marenda MS et al. Mycoplasmas. In Prescott JF, Rycroft AN, Boyce JD, MacInnes JI, Immerseel FV. eds Pathogenesis of Bacterial Infections in Animals 2022 pp 667–700
    [Google Scholar]
  6. Krause DC, Leith DK, Wilson RM, Baseman JB. Identification of Mycoplasma pneumoniae proteins associated with hemadsorption and virulence. Infect Immun 1982; 35:809–817 [View Article] [PubMed]
    [Google Scholar]
  7. Delaney NF, Balenger S, Bonneaud C, Marx CJ, Hill GE et al. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet 2012; 8:e1002511 [View Article] [PubMed]
    [Google Scholar]
  8. Momynaliev KT, Govorun VM. Mechanisms of genetic instability in Mollicutes (Mycoplasmas). Russ J Genet 2001; 37:979–992 [View Article]
    [Google Scholar]
  9. Citti C, Dordet-Frisoni E, Nouvel LX, Kuo CH, Baranowski E. Horizontal gene transfers in Mycoplasmas (Mollicutes). Curr Issues Mol Biol 2018; 29:3–22 [View Article] [PubMed]
    [Google Scholar]
  10. Klose SM, Olaogun OM, Disint JF, Shil P, Gyuranecz M et al. Genomic diversity of a globally used, live attenuated mycoplasma vaccine. Microbiol Spectr 2022; 10:e02845-02822 [View Article] [PubMed]
    [Google Scholar]
  11. Klose SM, Shil P, Underwood GJ, Morrow CJ, Marenda MS et al. Obg plays a significant role in temperature sensitivity of Mycoplasma synoviae live attenuated vaccine strain MS-H. Vet Microbiol 2023; 284:109818 [View Article] [PubMed]
    [Google Scholar]
  12. Klose SM, Omotainse OS, Zare S, Vaz PK, Armat P et al. Virulence factors of Mycoplasma synoviae: three genes influencing colonization, immunogenicity, and transmissibility. Front Microbiol 2022; 13:1042212 [View Article] [PubMed]
    [Google Scholar]
  13. Klose SM, De Souza DP, Disint JF, Andrews DM, Underwood GJ et al. Reversion of mutations in a live mycoplasma vaccine alters its metabolism. Vaccine 2023; 41:3358–3366 [View Article] [PubMed]
    [Google Scholar]
  14. Noormohammadi AH, Markham PF, Duffy MF, Whithear KG, Browning GF. Multigene families encoding the major hemagglutinins in phylogenetically distinct mycoplasmas. Infect Immun 1998; 66:3470–3475 [View Article] [PubMed]
    [Google Scholar]
  15. Sirand-Pugnet P, Lartigue C, Marenda M, Jacob D, Barré A et al. Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. PLOS Genet 2007; 3:e75 [View Article] [PubMed]
    [Google Scholar]
  16. Randolph JF, Moise NS, Scarlett JM, Shin SJ, Blue JT et al. Prevalence of mycoplasmal and ureaplasmal recovery from tracheobronchial lavages and of mycoplasmal recovery from pharyngeal swab specimens in cats with or without pulmonary disease. Am J Vet Res 1993; 54:897–900 [PubMed]
    [Google Scholar]
  17. Foster SF, Barrs VR, Martin P, Malik R. Pneumonia associated with Mycoplasma spp in three cats. Aust Vet J 1998; 76:460–464 [View Article] [PubMed]
    [Google Scholar]
  18. Sykes JE. Feline hemotropic mycoplasmas. J Vet Emerg Crit Care 2010; 20:62–69 [View Article] [PubMed]
    [Google Scholar]
  19. Le Boedec K. A systematic review and meta-analysis of the association between Mycoplasma spp and upper and lower respiratory tract disease in cats. J Am Vet Med Assoc 2017; 250:397–407 [View Article] [PubMed]
    [Google Scholar]
  20. Wood JL, Chanter N, Newton JR, Burrell MH, Dugdale D et al. An outbreak of respiratory disease in horses associated with Mycoplasma felis infection. Vet Rec 1997; 140:388–391 [View Article] [PubMed]
    [Google Scholar]
  21. Cohn LA. Feline respiratory disease complex. Vet Clin North Am Small Anim Pract 2011; 41:1273–1289 [View Article] [PubMed]
    [Google Scholar]
  22. Nguyen D, Barrs VR, Kelman M, Ward MP. Feline upper respiratory tract infection and disease in Australia. J Feline Med Surg 2019; 21:973–978 [View Article] [PubMed]
    [Google Scholar]
  23. Fernandez M, Manzanilla EG, Lloret A, León M, Thibault J-C. Prevalence of feline herpesvirus-1, feline calicivirus, Chlamydophila felis and Mycoplasma felis DNA and associated risk factors in cats in Spain with upper respiratory tract disease, conjunctivitis and/or gingivostomatitis. J Feline Med Surg 2017; 19:461–469 [View Article] [PubMed]
    [Google Scholar]
  24. Lee-Fowler T. Feline respiratory disease: what is the role of Mycoplasma species?. J Feline Med Surg 2014; 16:563–571 [View Article] [PubMed]
    [Google Scholar]
  25. Tonozzi CC. Feline respiratory disease complex MSD Veterinary Manual; 2022
    [Google Scholar]
  26. Kinoshita Y, Niwa H, Uchida-Fujii E, Nukada T. Complete genome sequence of mycoplasma felis strain Myco-2, isolated from an equine tracheal wash sample in Japan. Microbiol Resour Announc 2020; 9: [View Article]
    [Google Scholar]
  27. Framst I, D Andrea C, Baquero M, Maboni G. Development of a long-read next generation sequencing workflow for improved characterization of fastidious respiratory mycoplasmas. Microbiology 2022; 168:11 [View Article] [PubMed]
    [Google Scholar]
  28. Frey ML, Hanson RP, Andrson DP. A medium for the isolation of avian mycoplasmas. Am J Vet Res 1968; 29:2163–2171 [PubMed]
    [Google Scholar]
  29. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article]
    [Google Scholar]
  30. Wick R. Filtlong v. 0.2. 0 2021
    [Google Scholar]
  31. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  32. Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol 2022; 18:e1009802 [View Article] [PubMed]
    [Google Scholar]
  33. Li H. Aligning sequence reads, clone sequences and assembly Contigs with BWA-MEM. arXiv preprint arXiv:13033997 2013
    [Google Scholar]
  34. Darling AE, Mau B, Perna NT. Progressive mauve: multiple alignment of Genomes with gene flux and rearrangement. arXiv preprint arXiv:09105780 2009
    [Google Scholar]
  35. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  36. Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 2021; 18:366–368 [View Article] [PubMed]
    [Google Scholar]
  37. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  38. Ferrés I, Iraola G. An object-oriented framework for evolutionary pangenome analysis. Cell Rep Methods 2021; 1:100085 [View Article] [PubMed]
    [Google Scholar]
  39. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 2017; 34:3299–3302 [View Article]
    [Google Scholar]
  40. Dhillon BK, Chiu TA, Laird MR, Langille MGI, Brinkman FSL. IslandViewer update: improved genomic island discovery and visualization. Nucleic Acids Res 2013; 41:W129–32 [View Article] [PubMed]
    [Google Scholar]
  41. Liu M, Li X, Xie Y, Bi D, Sun J et al. ICEberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Res 2018; 47:D660–D665 [View Article]
    [Google Scholar]
  42. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res 2023; 51:D690–D699 [View Article] [PubMed]
    [Google Scholar]
  43. Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 2022; 50:D912–D917 [View Article] [PubMed]
    [Google Scholar]
  44. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article]
    [Google Scholar]
  45. Garneau JR, Depardieu F, Fortier L-C, Bikard D, Monot M. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 2017; 7:8292 [View Article]
    [Google Scholar]
  46. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  47. Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H et al. ViPTree: the viral proteomic tree server. Bioinformatics 2017; 33:2379–2380 [View Article]
    [Google Scholar]
  48. Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 2019; 37:632–639 [View Article] [PubMed]
    [Google Scholar]
  49. Citti C, Baranowski E, Dordet-Frisoni E, Faucher M, Nouvel L-X. Genomic Islands in mycoplasmas. Genes 2020; 11:836 [View Article]
    [Google Scholar]
  50. Gourlay RN, Wyld SG, Garwes DJ. Some properties of mycoplasma virus Br 1. Arch Virol 1983; 75:1–15 [View Article] [PubMed]
    [Google Scholar]
  51. Gourlay RN, Wyld SG, Poulton ME. Some characteristics of mycoplasma virus Hr 1, isolated from and infecting Mycoplasma hyorhinis. Brief report. Arch Virol 1983; 77:81–85 [View Article] [PubMed]
    [Google Scholar]
  52. Mahillon J, Chandler M. Insertion sequences. Microbiol Mol Biol Rev 1998; 62:725–774 [View Article]
    [Google Scholar]
  53. Frey J. Insertion sequence analysis. In Miles R, Nicholas R. eds Mycoplasma Protocols Totowa, NJ: Humana Press; 1998 pp 197–205 [View Article]
    [Google Scholar]
  54. Lysnyansky I, Calcutt MJ, Ben-Barak I, Ron Y, Levisohn S et al. Molecular characterization of newly identified IS 3, IS 4 and IS 30 insertion sequence-like elements in Mycoplasma bovis and their possible roles in genome plasticity. FEMS Microbiol Lett 2009; 294:172–182 [View Article] [PubMed]
    [Google Scholar]
  55. Thomas A, Linden A, Mainil J, Bischof DF, Frey J et al. Mycoplasma bovis shares insertion sequences with Mycoplasma agalactiae and Mycoplasma mycoides subsp. mycoides SC: evolutionary and developmental aspects. FEMS Microbiol Lett 2005; 245:249–255 [View Article] [PubMed]
    [Google Scholar]
  56. Loreto ELS, Ortiz MF, Porto JIR. Insertion sequences as variability generators in the Mycoplasma hyopneumoniae and M. synoviae genomes. Genet Mol Biol 2007; 30:283–289 [View Article]
    [Google Scholar]
  57. Vilei EM, Nicolet J, Frey J. IS1634, a novel insertion element creating long, variable-length direct repeats which is specific for Mycoplasma mycoides subsp. mycoides small-colony type. J Bacteriol 1999; 181:1319–1323 [View Article] [PubMed]
    [Google Scholar]
  58. Baranowski E, Dordet-Frisoni E, Sagné E, Hygonenq M-C, Pretre G et al. The integrative conjugative element (ICE) of Mycoplasma Agalactiae: key elements involved in horizontal dissemination and influence of coresident ices. mBio 2018; 9:10.1128
    [Google Scholar]
  59. Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009; 73:775–808 [View Article] [PubMed]
    [Google Scholar]
  60. Dordet-Frisoni E, Sagné E, Baranowski E, Breton M, Nouvel LX et al. Chromosomal transfers in mycoplasmas: when minimal genomes go mobile. mBio 2014; 5:e01958 [View Article] [PubMed]
    [Google Scholar]
  61. Hartmann AD, Hawley J, Werckenthin C, Lappin MR, Hartmann K. Detection of bacterial and viral organisms from the conjunctiva of cats with conjunctivitis and upper respiratory tract disease. J Feline Med Surg 2010; 12:775–782 [View Article] [PubMed]
    [Google Scholar]
  62. Ahmer BMM, Tran M, Heffron F. The virulence plasmid of Salmonella typhimurium is self-transmissible. J Bacteriol 1999; 181:1364–1368 [View Article]
    [Google Scholar]
  63. Szczepanek SM, Boccaccio M, Pflaum K, Liao X, Geary SJ. Hydrogen peroxide production from glycerol metabolism is dispensable for virulence of Mycoplasma gallisepticum in the tracheas of chickens. Infect Immun 2014; 82:4915–4920 [View Article] [PubMed]
    [Google Scholar]
  64. Hames C, Halbedel S, Hoppert M, Frey J, Stülke J. Glycerol metabolism is important for cytotoxicity of Mycoplasma pneumoniae. J Bacteriol 2009; 191:747–753 [View Article] [PubMed]
    [Google Scholar]
  65. Chang T-H, Lo W-S, Ku C, Chen L-L, Kuo C-H. Molecular evolution of the substrate utilization strategies and putative virulence factors in mosquito-associated Spiroplasma species. Genome Biol Evol 2014; 6:500–509 [View Article] [PubMed]
    [Google Scholar]
  66. Pilo P, Vilei EM, Peterhans E, Bonvin-Klotz L, Stoffel MH et al. A metabolic enzyme as A primary virulence factor of Mycoplasma mycoides subsp. mycoides small colony. J Bacteriol 2005; 187:6824–6831 [View Article] [PubMed]
    [Google Scholar]
  67. Khan LA, Miles RJ, Nicholas RAJ. Hydrogen peroxide production by Mycoplasma bovis and Mycoplasma agalactiae and effect of in vitro passage on a Mycoplasma bovis strain producing high levels of H2O2. Vet Res Commun 2005; 29:181–188 [View Article] [PubMed]
    [Google Scholar]
  68. Szczepanek SM, Tulman ER, Gorton TS, Liao X, Lu Z et al. Comparative genomic analyses of attenuated strains of Mycoplasma gallisepticum. Infect Immun 2010; 78:1760–1771 [View Article] [PubMed]
    [Google Scholar]
  69. Tseng C-W, Chiu C-J, Kanci A, Citti C, Rosengarten R et al. The oppD gene and putative peptidase genes may be required for virulence in Mycoplasma gallisepticum. Infect Immun 2017; 85:e00023-17 [View Article] [PubMed]
    [Google Scholar]
  70. Masukagami Y, Nijagal B, Mahdizadeh S, Tseng C-W, Dayalan S et al. A combined metabolomic and bioinformatic approach to investigate the function of transport proteins of the important pathogen Mycoplasma bovis. Vet Microbiol 2019; 234:8–16 [View Article] [PubMed]
    [Google Scholar]
  71. Masukagami Y, De Souza DP, Dayalan S, Bowen C, O’Callaghan S et al. Comparative metabolomics of Mycoplasma bovis and Mycoplasma gallisepticum reveals fundamental differences in active metabolic pathways and suggests novel gene annotations. MSystems 2017; 2:00055–00017 [View Article] [PubMed]
    [Google Scholar]
  72. Mahdizadeh S, Masukagami Y, Tseng C-W, Markham PF, De Souza DP et al. A Mycoplasma gallisepticum glycerol ABC transporter involved in pathogenicity. Appl Environ Microbiol 2021; 87:e03112–03120 [View Article] [PubMed]
    [Google Scholar]
  73. Chen H, Yu S, Shen X, Chen D, Qiu X et al. The Mycoplasma gallisepticum α-enolase is cell surface-exposed and mediates adherence by binding to chicken plasminogen. Microb Pathog 2011; 51:285–290 [View Article] [PubMed]
    [Google Scholar]
  74. Vilei EM, Frey J. Genetic and biochemical characterization of glycerol uptake in Mycoplasma mycoides subsp. mycoides SC: its impact on H2O2 production and virulence. Clin Diagn Lab Immunol 2001; 8:85–92 [View Article] [PubMed]
    [Google Scholar]
  75. Shterzer N, Mizrahi I. The animal gut as a melting pot for horizontal gene transfer. Can J Microbiol 2015; 61:603–605 [View Article] [PubMed]
    [Google Scholar]
  76. Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 2009; 364:2275–2289 [View Article] [PubMed]
    [Google Scholar]
  77. Oliveira PH, Touchon M, Rocha EPC. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 2014; 42:10618–10631 [View Article] [PubMed]
    [Google Scholar]
  78. Dordet-Frisoni E, Vandecasteele C, Contarin R, Sagné E, Baranowski E et al. Impacts of Mycoplasma agalactiae restriction-modification systems on pan-epigenome dynamics and genome plasticity. Microb Genom 2022; 8:mgen000829 [View Article] [PubMed]
    [Google Scholar]
  79. Oliveira PH, Touchon M, Rocha EPC. Regulation of genetic flux between bacteria by restriction–modification systems. Proc Natl Acad Sci USA 2016; 113:5658–5663 [View Article]
    [Google Scholar]
  80. Chen I, Dubnau D. DNA uptake during bacterial transformation. Nat Rev Microbiol 2004; 2:241–249 [View Article] [PubMed]
    [Google Scholar]
  81. Kapteijn R, Shitut S, Aschmann D, Zhang L, de Beer M et al. Endocytosis-like DNA uptake by cell wall-deficient bacteria. Nat Commun 2022; 13:5524 [View Article] [PubMed]
    [Google Scholar]
  82. Pimentel ZT, Zhang Y. Evolution of the natural transformation protein, ComEC, in bacteria. Front Microbiol 2018; 9:2980 [View Article] [PubMed]
    [Google Scholar]
  83. Wang Y, Huang J-M, Wang S-L, Gao Z-M, Zhang A-Q et al. Genomic characterization of symbiotic mycoplasmas from the stomach of deep-sea isopod Bathynomus sp. Environ Microbiol 2016; 18:2646–2659 [View Article] [PubMed]
    [Google Scholar]
  84. Christner M, Franke GC, Schommer NN, Wendt U, Wegert K et al. The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 2010; 75:187–207 [View Article] [PubMed]
    [Google Scholar]
  85. Speziale P, Pietrocola G, Foster TJ, Geoghegan JA. Protein-based biofilm matrices in staphylococci. Front Cell Infect Microbiol 2014; 4:171 [View Article] [PubMed]
    [Google Scholar]
  86. Ledger L, Eidt J, Cai HY. Identification of antimicrobial resistance-associated genes through whole genome sequencing of Mycoplasma bovis isolates with different antimicrobial resistances. Pathogens 2020; 9:588 [View Article]
    [Google Scholar]
  87. Mahdizadeh S, Sansom FM, Lee S-W, Browning GF, Marenda MS. Targeted mutagenesis of Mycoplasma gallisepticum using its endogenous CRISPR/Cas system. Vet Microbiol 2020; 250:108868 [View Article] [PubMed]
    [Google Scholar]
  88. Pereyre S, Goret J, Bébéar C. Mycoplasma pneumoniae: current knowledge on macrolide resistance and treatment. Front Microbiol 2016; 7:974 [View Article] [PubMed]
    [Google Scholar]
  89. Dégrange S, Renaudin H, Charron A, Pereyre S, Bébéar C et al. Reduced susceptibility to tetracyclines is associated in vitro with the presence of 16S rRNA mutations in Mycoplasma hominis and Mycoplasma pneumoniae. J Antimicrob Chemother 2008; 61:1390–1392 [View Article] [PubMed]
    [Google Scholar]
  90. Shimada Y, Deguchi T, Nakane K, Yasuda M, Yokoi S et al. Macrolide resistance-associated 23S rRNA mutation in Mycoplasma genitalium, Japan. Emerg Infect Dis 2011; 17:1148–1150 [View Article] [PubMed]
    [Google Scholar]
  91. Kovács ÁB, Wehmann E, Sváb D, Bekő K, Grózner D et al. Novel prophage-like sequences in Mycoplasma anserisalpingitidis. Infect Genet Evol 2021; 92:104886 [View Article] [PubMed]
    [Google Scholar]
  92. Turner D, Shkoporov AN, Lood C, Millard AD, Dutilh BE et al. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch Virol 2023; 168:74 [View Article] [PubMed]
    [Google Scholar]
  93. Röske K, Calcutt MJ, Wise KS. The Mycoplasma fermentans prophage ΦMFV1: genome organization, mobility and variable expression of an encoded surface protein. Mol Microbiol 2004; 52:1703–1720 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001227
Loading
/content/journal/mgen/10.1099/mgen.0.001227
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error