1887

Abstract

is a leading cause of infection in pigs, causing extensive economic losses. In addition, it can also infect wild fauna, and can be responsible for severe infections in humans. Increasing antimicrobial resistance (AMR) has been described in worldwide and most of the AMR genes are carried by mobile genetic elements (MGEs). This contributes to their dissemination by horizontal gene transfer. A collection of 102 strains isolated from humans, pigs and wild boars in France was subjected to whole genome sequencing in order to: (i) study their genetic diversity, (ii) evaluate their content in virulence-associated genes, (iii) decipher the mechanisms responsible for their AMR and their association with MGEs, and (iv) study their ability to acquire extracellular DNA by natural transformation. Analysis by hierarchical clustering on principal components identified a few virulence-associated factors that distinguish invasive CC1 strains from the other strains. A plethora of AMR genes (=217) was found in the genomes. Apart from the frequently reported (B) and (O) genes, more recently described AMR genes were identified [(F)/, (D)]. Modifications in PBPs/MraY and GyrA/ParC were detected in the penicillin- and fluoroquinolone-resistant isolates respectively. New AMR gene–MGE associations were detected. The majority of the strains have the full set of genes required for competence, i.e for the acquisition of extracellular DNA (that could carry AMR genes) by natural transformation. Hence the risk of dissemination of these AMR genes should not be neglected.

Funding
This study was supported by the:
  • Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)
    • Principle Award Recipient: ManonDechêne-Tempier
  • Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (Anses)
    • Principle Award Recipient: ManonDechêne-Tempier
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001224
2024-03-28
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/3/mgen001224.html?itemId=/content/journal/mgen/10.1099/mgen.0.001224&mimeType=html&fmt=ahah

References

  1. Okura M, Osaki M, Nomoto R, Arai S, Osawa R et al. Current taxonomical situation of Streptococcus suis. Pathogens 2016; 5:45 [View Article] [PubMed]
    [Google Scholar]
  2. Goyette-Desjardins G, Auger JP, Xu J, Segura M, Gottschalk M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect 2014; 3:e45 [View Article] [PubMed]
    [Google Scholar]
  3. Huang J, Liu X, Chen H, Chen L, Gao X et al. Identification of six novel capsular polysaccharide loci (NCL) from Streptococcus suis multidrug resistant non-typeable strains and the pathogenic characteristic of strains carrying new NCLs. Transbound Emerg Dis 2019; 66:995–1003 [View Article] [PubMed]
    [Google Scholar]
  4. Pan Z, Ma J, Dong W, Song W, Wang K et al. Novel variant serotype of Streptococcus suis isolated from piglets with meningitis. Appl Environ Microbiol 2015; 81:976–985 [View Article] [PubMed]
    [Google Scholar]
  5. Zheng H, Qiu X, Roy D, Segura M, Du P et al. Genotyping and investigating capsular polysaccharide synthesis gene loci of non-serotypeable Streptococcus suis isolated from diseased pigs in Canada. Vet Res 2017; 48:10 [View Article] [PubMed]
    [Google Scholar]
  6. Hatrongjit R, Fittipaldi N, Gottschalk M, Kerdsin A. Tools for molecular epidemiology of Streptococcus suis. Pathogens 2020; 9:81 [View Article] [PubMed]
    [Google Scholar]
  7. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 2018; 3:124 [View Article] [PubMed]
    [Google Scholar]
  8. Fittipaldi N, Segura M, Grenier D, Gottschalk M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 2012; 7:259–279 [View Article] [PubMed]
    [Google Scholar]
  9. Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772–3799 [View Article] [PubMed]
    [Google Scholar]
  10. Segura M, Fittipaldi N, Calzas C, Gottschalk M. Critical Streptococcus suis virulence factors: are they all really critical?. Trends Microbiol 2017; 25:585–599 [View Article] [PubMed]
    [Google Scholar]
  11. Bleuzé M, Gottschalk M, Segura M. Neutrophils in Streptococcus suis infection: from host defense to pathology. Microorganisms 2021; 9:2392 [View Article] [PubMed]
    [Google Scholar]
  12. Nicholson TL, Bayles DO. Comparative virulence and antimicrobial resistance distribution of Streptococcus suis isolates obtained from the United States. Front Microbiol 2022; 13:1043529 [View Article] [PubMed]
    [Google Scholar]
  13. Scherrer S, Rosato G, Spoerry Serrano N, Stevens MJA, Rademacher F et al. Population structure, genetic diversity and pathotypes of Streptococcus suis isolated during the last 13 years from diseased pigs in Switzerland. Vet Res 2020; 51:85 [View Article] [PubMed]
    [Google Scholar]
  14. Lekagul A, Tangcharoensathien V, Yeung S. Patterns of antibiotic use in global pig production: a systematic review. Vet Anim Sci 2019; 7:100058 [View Article] [PubMed]
    [Google Scholar]
  15. Libante V, Nombre Y, Coluzzi C, Staub J, Guédon G et al. Chromosomal conjugative and mobilizable elements in Streptococcus suis: major actors in the spreading of antimicrobial resistance and bacteriocin synthesis genes. Pathogens 2019; 9:22 [View Article] [PubMed]
    [Google Scholar]
  16. Dechêne-Tempier M, Marois-Créhan C, Libante V, Jouy E, Leblond-Bourget N et al. Update on the mechanisms of antibiotic resistance and the mobile resistome in the emerging zoonotic pathogen Streptococcus suis. Microorganisms 2021; 9:1765 [View Article] [PubMed]
    [Google Scholar]
  17. Wang C-Z, Wang M-G, Chu Y-F, Sun R-Y, Li J-G et al. Antibiotic resistance patterns and molecular characterization of Streptococcus suis isolates from swine and humans in China. Microbiol Spectr 2023; 11:e0030923 [View Article] [PubMed]
    [Google Scholar]
  18. Huang J, Ma J, Shang K, Hu X, Liang Y et al. Evolution and diversity of the antimicrobial resistance associated mobilome in Streptococcus suis: a probable mobile genetic elements reservoir for other Streptococci. Front Cell Infect Microbiol 2016; 6:118 [View Article] [PubMed]
    [Google Scholar]
  19. Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720–760 [View Article] [PubMed]
    [Google Scholar]
  20. Wozniak RAF, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010; 8:552–563 [View Article] [PubMed]
    [Google Scholar]
  21. Coluzzi C, Guédon G, Devignes M-D, Ambroset C, Loux V et al. A glimpse into the world of integrative and mobilizable elements in Streptococci reveals an unexpected diversity and novel families of mobilization proteins. Front Microbiol 2017; 8:443 [View Article] [PubMed]
    [Google Scholar]
  22. Guédon G, Libante V, Coluzzi C, Payot S, Leblond-Bourget N. The obscure world of integrative and mobilizable elements, highly widespread elements that pirate bacterial conjugative systems. Genes 2017; 8:337 [View Article] [PubMed]
    [Google Scholar]
  23. Zaccaria E, van Baarlen P, de Greeff A, Morrison DA, Smith H et al. Control of competence for DNA transformation in Streptococcus suis by genetically transferable pherotypes. PLoS One 2014; 9:e99394 [View Article] [PubMed]
    [Google Scholar]
  24. Martin B, Quentin Y, Fichant G, Claverys JP. Independent evolution of competence regulatory cascades in Streptococci?. Trends Microbiol 2006; 14:339–345 [View Article] [PubMed]
    [Google Scholar]
  25. Zaccaria E, Wels M, van Baarlen P, Wells JM. Temporal regulation of the transformasome and competence development in Streptococcus suis. Front Microbiol 2016; 7:1922 [View Article] [PubMed]
    [Google Scholar]
  26. Okura M, Nozawa T, Watanabe T, Murase K, Nakagawa I et al. A locus encoding variable defense systems against invading DNA identified in Streptococcus suis. Genome Biol Evol 2017; 9:1000–1012 [View Article] [PubMed]
    [Google Scholar]
  27. Dechêne-Tempier M, Jouy E, Bayon-Auboyer M-H, Bougeard S, Chauvin C et al. Antimicrobial resistance profiles of Streptococcus suis isolated from pigs, wild boars, and humans in France between 1994 and 2020. J Clin Microbiol 2023; 61:e0016423 [View Article] [PubMed]
    [Google Scholar]
  28. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  29. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  30. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  31. Athey TBT, Teatero S, Lacouture S, Takamatsu D, Gottschalk M et al. Determining Streptococcus suis serotype from short-read whole-genome sequencing data. BMC Microbiol 2016; 16:162 [View Article] [PubMed]
    [Google Scholar]
  32. King SJ, Leigh JA, Heath PJ, Luque I, Tarradas C et al. Development of a multilocus sequence typing scheme for the pig pathogen Streptococcus suis: identification of virulent clones and potential capsular serotype exchange. J Clin Microbiol 2002; 40:3671–3680 [View Article] [PubMed]
    [Google Scholar]
  33. Spratt BG, Hanage WP, Li B, Aanensen DM, Feil EJ. Displaying the relatedness among isolates of bacterial species -- the eBURST approach. FEMS Microbiol Lett 2004; 241:129–134 [View Article] [PubMed]
    [Google Scholar]
  34. Wu CF, Chen SH, Chou CC, Wang CM, Huang SW et al. Serotype and multilocus sequence typing of Streptococcus suis from diseased pigs in Taiwan. Sci Rep 2023; 13:8263 [View Article] [PubMed]
    [Google Scholar]
  35. Wileman TM, Weinert LA, Howell KJ, Wang J, Peters SE et al. Pathotyping the zoonotic pathogen Streptococcus suis: novel genetic markers to differentiate invasive disease-associated isolates from non-disease-associated isolates from England and Wales. J Clin Microbiol 2019; 57:e01712-18 [View Article] [PubMed]
    [Google Scholar]
  36. Bosi E, Donati B, Galardini M, Brunetti S, Sagot M-F et al. MeDuSa: a multi-draft based scaffolder. Bioinformatics 2015; 31:2443–2451 [View Article] [PubMed]
    [Google Scholar]
  37. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  38. Lao J, Lacroix T, Guédon G, Coluzzi C, Payot S et al. ICEscreen: a tool to detect Firmicute ICEs and IMEs, isolated or enclosed in composite structures. NAR Genom Bioinform 2022; 4:lqac079 [View Article] [PubMed]
    [Google Scholar]
  39. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  40. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  41. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  42. Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 2017; 11:2864–2868 [View Article] [PubMed]
    [Google Scholar]
  43. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  44. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  45. Hadjirin NF, Miller EL, Murray GGR, Yen PLK, Phuc HD et al. Large-scale genomic analysis of antimicrobial resistance in the zoonotic pathogen Streptococcus suis. BMC Biol 2021; 19:191 [View Article] [PubMed]
    [Google Scholar]
  46. Yu R, Zhang Y, Xu Y, Schwarz S, Li X-S et al. Emergence of a tet(M) variant conferring resistance to tigecycline in Streptococcus suis. Front Vet Sci 2021; 8: [View Article]
    [Google Scholar]
  47. Huang J, Sun J, Wu Y, Chen L, Duan D et al. Identification and pathogenicity of an XDR Streptococcus suis isolate that harbours the phenicol-oxazolidinone resistance genes optrA and cfr, and the bacitracin resistance locus bcrABDR. Int J Antimicrob Agents 2019; 54:43–48 [View Article] [PubMed]
    [Google Scholar]
  48. Edgar RC. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun 2022; 13:6968 [View Article] [PubMed]
    [Google Scholar]
  49. Wickham H. Data analysis. In Ggplot2 Springer International Publishing; 2016 pp 189–201
    [Google Scholar]
  50. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017; 33:2938–2940 [View Article]
    [Google Scholar]
  51. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016; 32:2847–2849 [View Article] [PubMed]
    [Google Scholar]
  52. Chen C, Zhang W, Zheng H, Lan R, Wang H et al. Minimum core genome sequence typing of bacterial pathogens: a unified approach for clinical and public health microbiology. J Clin Microbiol 2013; 51:2582–2591 [View Article] [PubMed]
    [Google Scholar]
  53. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  54. Baig A, Weinert LA, Peters SE, Howell KJ, Chaudhuri RR et al. Whole genome investigation of a divergent clade of the pathogen Streptococcus suis. Front Microbiol 2015; 6:1191 [View Article] [PubMed]
    [Google Scholar]
  55. Stevens MJA, Spoerry Serrano N, Cernela N, Schmitt S, Schrenzel J et al. Massive diversity in whole-genome sequences of Streptococcus suis strains from infected pigs in Switzerland. Microbiol Resour Announc 2019; 8:e01656-18 [View Article] [PubMed]
    [Google Scholar]
  56. Okura M, Takamatsu D, Maruyama F, Nozawa T, Nakagawa I et al. Genetic analysis of capsular polysaccharide synthesis gene clusters from all serotypes of Streptococcus suis: potential mechanisms for generation of capsular variation. Appl Environ Microbiol 2013; 79:2796–2806 [View Article] [PubMed]
    [Google Scholar]
  57. Okura M, Auger J-P, Shibahara T, Goyette-Desjardins G, Van Calsteren M-R et al. Capsular polysaccharide switching in Streptococcus suis modulates host cell interactions and virulence. Sci Rep 2021; 11:6513 [View Article] [PubMed]
    [Google Scholar]
  58. Weinert LA, Chaudhuri RR, Wang J, Peters SE, Corander J et al. Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nat Commun 2015; 6:6740 [View Article] [PubMed]
    [Google Scholar]
  59. King SJ, Allen AG, Maskell DJ, Dowson CG, Whatmore AM. Distribution, genetic diversity, and variable expression of the gene encoding hyaluronate lyase within the Streptococcus suis population. J Bacteriol 2004; 186:4740–4747 [View Article] [PubMed]
    [Google Scholar]
  60. Wisselink HJ, Smith HE, Stockhofe-Zurwieden N, Peperkamp K, Vecht U. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries. Vet Microbiol 2000; 74:237–248 [View Article] [PubMed]
    [Google Scholar]
  61. Berthelot-Hérault F, Morvan H, Kéribin AM, Gottschalk M, Kobisch M. Production of muraminidase-released protein (MRP), extracellular factor (EF) and suilysin by field isolates of Streptococcus suis capsular types 2, 1/2, 9, 7 and 3 isolated from swine in France. Vet Res 2000; 31:473–479 [View Article] [PubMed]
    [Google Scholar]
  62. Zhang C, Liu L, Zhang P, Cui J, Qin X et al. Characterization of a novel gene, srpA, conferring resistance to Streptogramin A, Pleuromutilins, and Lincosamides in Streptococcus suis. Engineering 2022; 9:85–94 [View Article]
    [Google Scholar]
  63. Bamphensin N, Chopjitt P, Hatrongjit R, Boueroy P, Fittipaldi N et al. Non-penicillin-susceptible Streptococcus suis isolated from humans. Pathogens 2021; 10:1178 [View Article] [PubMed]
    [Google Scholar]
  64. Lunha K, Chumpol W, Jiemsup S, Samngamnim S, Assavacheep P et al. Relationship between penicillin-binding proteins alterations and β-lactams non-susceptibility of diseased pig-isolated Streptococcus suis. Antibiotics 2023; 12:158 [View Article] [PubMed]
    [Google Scholar]
  65. Brizuela J, Kajeekul R, Roodsant TJ, Riwload A, Boueroy P et al. Streptococcus suis outbreak caused by an emerging zoonotic strain with acquired multi-drug resistance in Thailand. Microb Genom 2023; 9:000952 [View Article] [PubMed]
    [Google Scholar]
  66. Escudero JA, San Millan A, Catalan A, de la Campa AG, Rivero E et al. First characterization of fluoroquinolone resistance in Streptococcus suis. Antimicrob Agents Chemother 2007; 51:777–782 [View Article] [PubMed]
    [Google Scholar]
  67. Yao J, Shang K, Huang J, Ran W, Kashif J et al. Overexpression of an ABC transporter and mutations of GyrA, GyrB, and ParC in contributing to high-level ciprofloxacin resistance in Streptococcus suis type 2. Biosci Trends 2014; 8:84–92 [View Article] [PubMed]
    [Google Scholar]
  68. Gurung M, Tamang MD, Moon DC, Kim S-R, Jeong J-H et al. Molecular basis of resistance to selected antimicrobial agents in the emerging zoonotic pathogen Streptococcus suis. J Clin Microbiol 2015; 53:2332–2336 [View Article]
    [Google Scholar]
  69. Hu P, Yang M, Zhang A, Wu J, Chen B et al. Comparative genomics study of multi-drug-resistance mechanisms in the antibiotic-resistant Streptococcus suis R61 strain. PLoS One 2011; 6:e24988 [View Article] [PubMed]
    [Google Scholar]
  70. Ostrer L, Khodursky RF, Johnson JR, Hiasa H, Khodursky A. Analysis of mutational patterns in quinolone resistance-determining regions of GyrA and ParC of clinical isolates. Int J Antimicrob Agents 2019; 53:318–324 [View Article] [PubMed]
    [Google Scholar]
  71. van der Putten BCL, Remondini D, Pasquini G, Janes VA, Matamoros S et al. Quantifying the contribution of four resistance mechanisms to ciprofloxacin MIC in Escherichia coli: a systematic review. J Antimicrob Chemother 2019; 74:298–310 [View Article] [PubMed]
    [Google Scholar]
  72. Ambroset C, Coluzzi C, Guédon G, Devignes M-D, Loux V et al. New insights into the classification and integration specificity of Streptococcus integrative conjugative elements through extensive genome exploration. Front Microbiol 2015; 6:1483 [View Article] [PubMed]
    [Google Scholar]
  73. Schwarz S, Shen J, Kadlec K, Wang Y, Brenner Michael G et al. Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: mode of action and mechanisms of resistance. Cold Spring Harb Perspect Med 2016; 6:a027037 [View Article] [PubMed]
    [Google Scholar]
  74. Wang CY, Dawid S. Mobilization of bacteriocins during competence in Streptococci. Trends Microbiol 2018; 26:389–391 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001224
Loading
/content/journal/mgen/10.1099/mgen.0.001224
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error