1887

Abstract

Swimming motility is a key bacterial trait, important to success in many niches. Biocontrol bacteria, such as Pf-5, are increasingly used in agriculture to control crop diseases, where motility is important for colonization of the plant rhizosphere. Swimming motility typically involves a suite of flagella and chemotaxis genes, but the specific gene set employed for both regulation and biogenesis can differ substantially between organisms. Here we used transposon-directed insertion site sequencing (TraDIS), a genome-wide approach, to identify 249 genes involved in Pf-5 swimming motility. In addition to the expected flagella and chemotaxis, we also identified a suite of additional genes important for swimming, including genes related to peptidoglycan turnover, O-antigen biosynthesis, cell division, signal transduction, c-di-GMP turnover and phosphate transport, and 27 conserved hypothetical proteins. Gene knockout mutants and TraDIS data suggest that defects in the Pst phosphate transport system lead to enhanced swimming motility. Overall, this study expands our knowledge of pseudomonad motility and highlights the utility of a TraDIS-based approach for analysing the functions of thousands of genes. This work sets a foundation for understanding how swimming motility may be related to the inconsistency in biocontrol bacteria performance in the field.

Funding
This study was supported by the:
  • Australian Research Council (Award FT180100123)
    • Principle Award Recipient: KA Hassan
  • Australian Research Council (Award DP160103746)
    • Principle Award Recipient: SashaG Tetu
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001212
2024-03-28
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/3/mgen001212.html?itemId=/content/journal/mgen/10.1099/mgen.0.001212&mimeType=html&fmt=ahah

References

  1. Paterson J, Jahanshah G, Li Y, Wang Q, Mehnaz S et al. The contribution of genome mining strategies to the understanding of active principles of PGPR strains. FEMS Microbiol Ecol 2017; 93:fiw249 [View Article] [PubMed]
    [Google Scholar]
  2. Fabian BK, Tetu SG, Paulsen IT. Application of transposon insertion sequencing to agricultural science. Front Plant Sci 2020; 11:291 [View Article] [PubMed]
    [Google Scholar]
  3. Schippers B, Bakker AW, Bakker PAHM. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 1987; 25:339–358 [View Article]
    [Google Scholar]
  4. Barahona E, Navazo A, Martínez-Granero F, Zea-Bonilla T, Pérez-Jiménez RM et al. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 2011; 77:5412–5419 [View Article] [PubMed]
    [Google Scholar]
  5. Turnbull GA, Morgan JAW, Whipps JM, Saunders JR. The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Microbiol Ecol 2001; 36:21–31 [View Article]
    [Google Scholar]
  6. de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N et al. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 2002; 15:1173–1180 [View Article] [PubMed]
    [Google Scholar]
  7. Venieraki A, Tsalgatidou PC, Georgakopoulos DG, Dimou M, Katinakis P. Swarming motility in plant-associated bacteria. Hellenic Plant Protection Journal 2016; 9:16–27 [View Article]
    [Google Scholar]
  8. Chaban B, Hughes HV, Beeby M. The flagellum in bacterial pathogens: for motility and a whole lot more. Semin Cell Dev Biol 2015; 46:91–103 [View Article] [PubMed]
    [Google Scholar]
  9. Sampedro I, Parales RE, Krell T, Hill JE. Pseudomonas chemotaxis. FEMS Microbiol Rev 2015; 39:17–46 [View Article] [PubMed]
    [Google Scholar]
  10. Mastropaolo MD, Silby MW, Nicoll JS, Levy SB. Novel genes involved in Pseudomonas fluorescens Pf0-1 motility and biofilm formation. Appl Environ Microbiol 2012; 78:4318–4329 [View Article] [PubMed]
    [Google Scholar]
  11. Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol 2010; 8:634–644 [View Article] [PubMed]
    [Google Scholar]
  12. Liu R, Ochman H. Stepwise formation of the bacterial flagellar system. Proc Natl Acad Sci USA 2007; 104:7116–7121 [View Article]
    [Google Scholar]
  13. Apel D, Surette MG. Bringing order to a complex molecular machine: the assembly of the bacterial flagella. Biochim Biophys Acta 2008; 1778:1851–1858 [View Article] [PubMed]
    [Google Scholar]
  14. Subramanian S, Kearns DB. Functional regulators of bacterial flagella. Annu Rev Microbiol 2019; 73:225–246 [View Article] [PubMed]
    [Google Scholar]
  15. Bouteiller M, Dupont C, Bourigault Y, Latour X, Barbey C et al. Pseudomonas flagella: generalities and specificities. IJMS 2021; 22:3337 [View Article]
    [Google Scholar]
  16. Dasgupta N, Wolfgang MC, Goodman AL, Arora SK, Jyot J et al. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol 2003; 50:809–824 [View Article] [PubMed]
    [Google Scholar]
  17. Harwood CS, Fosnaugh K, Dispensa M. Flagellation of Pseudomonas putida and analysis of its motile behavior. J Bacteriol 1989; 171:4063–4066 [View Article]
    [Google Scholar]
  18. Ping L, Birkenbeil J, Monajembashi S. Swimming behavior of the monotrichous bacterium Pseudomonas fluorescens SBW25. FEMS Microbiol Ecol 2013; 86:36–44 [View Article] [PubMed]
    [Google Scholar]
  19. Overhage J, Lewenza S, Marr AK, Hancock REW. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J Bacteriol 2007; 189:2164–2169 [View Article] [PubMed]
    [Google Scholar]
  20. Kakkanat A, Phan M-D, Lo AW, Beatson SA, Schembri MA. Novel genes associated with enhanced motility of Escherichia coli ST131. PLOS One 2017; 12:e0176290 [View Article] [PubMed]
    [Google Scholar]
  21. Garrido-Sanz D, Redondo-Nieto M, Martin M, Rivilla R. Comparative genomics of the Pseudomonas corrugata subgroup reveals high species diversity and allows the description of Pseudomonas ogarae sp. nov. Microb Genom 2021; 7:000593 [View Article] [PubMed]
    [Google Scholar]
  22. Dutta S, Yu SM, Jeong SC, Lee YH. High-throughput analysis of genes involved in biocontrol performance of Pseudomonas fluorescens NBC275 against Gray mold. J Appl Microbiol 2020; 128:265–279 [View Article] [PubMed]
    [Google Scholar]
  23. Howell CR, Stipanovic RD. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 1979; 69:480 [View Article]
    [Google Scholar]
  24. Loper JE, Kobayashi DY, Paulsen IT. The genomic sequence of Pseudomonas fluorescens Pf-5: insights into biological control. Phytopathology 2007; 97:233–238 [View Article] [PubMed]
    [Google Scholar]
  25. Howell CR, Stipanovic RD. Suppression of Pythium ultimum -induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 1980; 70:712 [View Article]
    [Google Scholar]
  26. Xu G-W. Selection of fluorescent pseudomonads antagonistic to Erwinia carotovora and suppressive of potato seed piece decay. Phytopathology 1986; 76:414 [View Article]
    [Google Scholar]
  27. Pfender WF, Kraus J, Loper JE. A genomic region from Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tritici-repentis in wheat straw. Phytopathology 1993; 83:1223 [View Article]
    [Google Scholar]
  28. Saravanan S, Muthumanickam P, Saravanan TS, Santhaguru K. Antagonistic potential of fluorescent Pseudomonas and its impact on growth of tomato challenged with phtopathogens. African Crop Science Journal 2013; 21:29–36
    [Google Scholar]
  29. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA et al. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 2005; 23:873–878 [View Article] [PubMed]
    [Google Scholar]
  30. Hassan KA, Johnson A, Shaffer BT, Ren Q, Kidarsa TA et al. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol 2010; 12:899–915 [View Article] [PubMed]
    [Google Scholar]
  31. Kidarsa TA, Shaffer BT, Goebel NC, Roberts DP, Buyer JS et al. Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS. Environ Microbiol 2013; 15:716–735 [View Article] [PubMed]
    [Google Scholar]
  32. Nadeau LJ, Barlow DE, Hung C-S, Biffinger JC, Crouch AL et al. Colonization and degradation of polyurethane coatings by Pseudomonas protegens biofilms is promoted by PueA and PueB hydrolases. Int Biodeterior Biodegrad 2021; 156:105121 [View Article]
    [Google Scholar]
  33. Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 2009; 19:2308–2316 [View Article] [PubMed]
    [Google Scholar]
  34. Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ et al. The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 2016; 32:1109–1111 [View Article]
    [Google Scholar]
  35. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307 [PubMed]
    [Google Scholar]
  36. Fabian BK, Foster C, Asher AJ, Elbourne LDH, Cain AK et al. Elucidating essential genes in plant-associated Pseudomonas protegens Pf-5 using transposon insertion sequencing. J Bacteriol 2021; 203:e00432-20 [View Article] [PubMed]
    [Google Scholar]
  37. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010
  38. R Core Team R: a language and environment for statistical computing, R Foundation for Statistical Computing. Vienna, Austria; 2022
  39. Barquist L, Langridge GC, Turner DJ, Phan MD, Turner AK et al. A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Res 2013; 41:4549–4564 [View Article]
    [Google Scholar]
  40. Jana B, Cain AK, Doerrler WT, Boinett CJ, Fookes MC et al. The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Sci Rep 2017; 7:42483 [View Article] [PubMed]
    [Google Scholar]
  41. Cowley LA, Low AS, Pickard D, Boinett CJ, Dallman TJ et al. Transposon insertion sequencing elucidates novel gene involvement in susceptibility and resistance to phages T4 and T7 in Escherichia coli O157. mBio 2018; 9:e00705-18 [View Article] [PubMed]
    [Google Scholar]
  42. Dembek M, Barquist L, Boinett CJ, Cain AK, Mayho M et al. High-throughput analysis of gene essentiality and sporulation in Clostridium difficile. mBio 2015; 6:e02383 [View Article] [PubMed]
    [Google Scholar]
  43. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article] [PubMed]
    [Google Scholar]
  44. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article]
    [Google Scholar]
  45. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998; 212:77–86 [View Article] [PubMed]
    [Google Scholar]
  46. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 2016; 44:D646–53 [View Article] [PubMed]
    [Google Scholar]
  47. Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE. Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 2011; 81:395–414 [View Article] [PubMed]
    [Google Scholar]
  48. Simon R, Priefer U, Pühler A. A broad host range mobilization system for In Vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1983; 1:784–791 [View Article]
    [Google Scholar]
  49. Lim CK, Penesyan A, Hassan KA, Loper JE, Paulsen IT. Disruption of transporters affiliated with enantio-pyochelin biosynthesis gene cluster of Pseudomonas protegens Pf-5 has pleiotropic effects. PLoS One 2016; 11:e0159884 [View Article] [PubMed]
    [Google Scholar]
  50. Fox J, Weisberg S. An {R} Companion to Applied Regression. Third ed Thousand Oaks, California: Sage; 2019
    [Google Scholar]
  51. de Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek TA et al. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 2007; 63:417–428 [View Article] [PubMed]
    [Google Scholar]
  52. Song C, Kidarsa TA, van de Mortel JE, Loper JE, Raaijmakers JM. Living on the edge: emergence of spontaneous gac mutations in Pseudomonas protegens during swarming motility. Environ Microbiol 2016; 18:3453–3465 [View Article] [PubMed]
    [Google Scholar]
  53. Frisk A, Jyot J, Arora SK, Ramphal R. Identification and functional characterization of flgM, a gene encoding the anti-sigma 28 factor in Pseudomonas aeruginosa. J Bacteriol 2002; 184:1514–1521 [View Article] [PubMed]
    [Google Scholar]
  54. Bhuwan M, Lee H-J, Peng H-L, Chang H-Y. Histidine-containing phosphotransfer protein-B (HptB) regulates swarming motility through partner-switching system in Pseudomonas aeruginosa PAO1 strain. J Biol Chem 2012; 287:1903–1914 [View Article] [PubMed]
    [Google Scholar]
  55. Matilla MA, Martín-Mora D, Gavira JA, Krell T. Pseudomonas aeruginosa as a model to study chemosensory pathway signaling. Microbiol Mol Biol Rev 2021; 85:e00151-20 [View Article] [PubMed]
    [Google Scholar]
  56. McGowan DBT. Characterization of the Chp system of Pseudomonas aeruginosa. PhD Monash University; 2016
    [Google Scholar]
  57. Kato J, Nakamura T, Kuroda A, Ohtake H. Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa. Biosci Biotechnol Biochem 1999; 63:155–161 [View Article] [PubMed]
    [Google Scholar]
  58. Wadhams GH, Armitage JP. Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 2004; 5:1024–1037 [View Article] [PubMed]
    [Google Scholar]
  59. Stock JB, Baker MD. Chemotaxis, Third ed Oxford: Elsevier; 2009 [View Article]
    [Google Scholar]
  60. Ortega DR, Zhulin IB. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. PLOS Comput Biol 2016; 12:e1004723 [View Article] [PubMed]
    [Google Scholar]
  61. Booth SC, Turner RJ. Phylogenetic characterization of the energy-taxis receptor Aer in Pseudomonas and phenotypic characterization in P. Pseudoalcaligenes Kf707. bioRxiv 2019 [View Article] [PubMed]
    [Google Scholar]
  62. Arrebola E, Cazorla FM. Aer receptors influence the Pseudomonas chlororaphis PCL1606 lifestyle. Front Microbiol 2020; 11:1560 [View Article] [PubMed]
    [Google Scholar]
  63. Huang KC, Mukhopadhyay R, Wen B, Gitai Z, Wingreen NS. Cell shape and cell-wall organization in Gram-negative bacteria. Proc Natl Acad Sci USA 2008; 105:19282–19287 [View Article]
    [Google Scholar]
  64. Lam JS, Taylor VL, Islam ST, Hao Y, Kocíncová D. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front Microbiol 2011; 2:118 [View Article] [PubMed]
    [Google Scholar]
  65. Huszczynski SM, Lam JS, Khursigara CM. The role of Pseudomonas aeruginosa lipopolysaccharide in bacterial pathogenesis and physiology. Pathogens 2020; 9:6 [View Article]
    [Google Scholar]
  66. Constantino MA, Jabbarzadeh M, Fu HC, Bansil R. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape. Sci Adv 2016; 2:e1601661 [View Article] [PubMed]
    [Google Scholar]
  67. Niba ETE, Naka Y, Nagase M, Mori H, Kitakawa M. A genome-wide approach to identify the genes involved in biofilm formation in E. coli. DNA Res 2007; 14:237–246 [View Article] [PubMed]
    [Google Scholar]
  68. Niba ETE, Li G, Aoki K, Kitakawa M. Characterization of rodZ mutants: RodZ is not absolutely required for the cell shape and motility. FEMS Microbiol Lett 2010; 309:35–42 [View Article] [PubMed]
    [Google Scholar]
  69. Guadayol Ò, Thornton KL, Humphries S. Cell morphology governs directional control in swimming bacteria. Sci Rep 2017; 7:2061 [View Article] [PubMed]
    [Google Scholar]
  70. Abeyrathne PD, Daniels C, Poon KKH, Matewish MJ, Lam JS. Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa lipopolysaccharide. J Bacteriol 2005; 187:3002–3012 [View Article] [PubMed]
    [Google Scholar]
  71. Chiku K, Tsunemi K, Yamamoto M, Ohnishi-Kameyama M, Yoshida M et al. Defects in D-rhamnosyl residue biosynthetic genes affect lipopolysaccharide structure, motility, and cell-surface hydrophobicity in Pseudomonas syringae pathovar glycinea race 4. Biosci Biotechnol Biochem 2013; 77:505–510 [View Article] [PubMed]
    [Google Scholar]
  72. Girgis HS, Liu Y, Ryu WS, Tavazoie S. A comprehensive genetic characterization of bacterial motility. PLoS Genet 2007; 3:1644–1660 [View Article] [PubMed]
    [Google Scholar]
  73. Lindhout T, Lau PCY, Brewer D, Lam JS. Truncation in the core oligosaccharide of lipopolysaccharide affects flagella-mediated motility in Pseudomonas aeruginosa PAO1 via modulation of cell surface attachment. Microbiology 2009; 155:3449–3460 [View Article] [PubMed]
    [Google Scholar]
  74. Jorgenson MA, Chen Y, Yahashiri A, Popham DL, Weiss DS. The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Mol Microbiol 2014; 93:113–128 [View Article] [PubMed]
    [Google Scholar]
  75. Choi U, Park SH, Lee HB, Lee C-R. Coordinated and distinct LD-transpeptidase-independent roles of peptidoglycan carboxypeptidases DacC and DacA in stress adaptation and cell shape maintenance. Microbiology 2022 [View Article]
    [Google Scholar]
  76. Yan Y, Wang Y, Yang X, Fang Y, Cheng G et al. The MinCDE cell division system participates in the regulation of type III secretion system (T3SS) genes, bacterial virulence, and motility in Xanthomonas oryzae pv. oryzae. Microorganisms 2022; 10:1549 [View Article] [PubMed]
    [Google Scholar]
  77. Lasocki K, Bartosik AA, Mierzejewska J, Thomas CM, Jagura-Burdzy G. Deletion of the parA (soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. J Bacteriol 2007; 189:5762–5772 [View Article] [PubMed]
    [Google Scholar]
  78. Bartosik AA, Mierzejewska J, Thomas CM, Jagura-Burdzy G. ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters. Microbiology (Reading) 2009; 155:1080–1092 [View Article] [PubMed]
    [Google Scholar]
  79. Davies JA, Harrison JJ, Marques LLR, Foglia GR, Stremick CA et al. The GacS sensor kinase controls phenotypic reversion of small colony variants isolated from biofilms of Pseudomonas aeruginosa PA14. FEMS Microbiol Ecol 2007; 59:32–46 [View Article] [PubMed]
    [Google Scholar]
  80. Kim J, Park W. Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol 2014; 98:6933–6946 [View Article] [PubMed]
    [Google Scholar]
  81. Navazo A, Barahona E, Redondo-Nieto M, Martínez-Granero F, Rivilla R et al. Three independent signalling pathways repress motility in Pseudomonas fluorescens F113. Microb Biotechnol 2009; 2:489–498 [View Article] [PubMed]
    [Google Scholar]
  82. Muriel C, Blanco-Romero E, Trampari E, Arrebola E, Durán D et al. The diguanylate cyclase AdrA regulates flagellar biosynthesis in Pseudomonas fluorescens F113 through SadB. Sci Rep 2019; 9:8096 [View Article] [PubMed]
    [Google Scholar]
  83. Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 2009; 7:263–273 [View Article] [PubMed]
    [Google Scholar]
  84. Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM et al. BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 2007; 189:8165–8178 [View Article] [PubMed]
    [Google Scholar]
  85. Martínez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, González de Heredia E et al. Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. PLoS One 2014; 9:e87608 [View Article] [PubMed]
    [Google Scholar]
  86. Xiao Y, Liu H, Nie H, Xie S, Luo X et al. Expression of the phosphodiesterase BifA facilitating swimming motility is partly controlled by FliA in Pseudomonas putida KT2440. Microbiologyopen 2017; 6:1–10 [View Article] [PubMed]
    [Google Scholar]
  87. Roy AB, Petrova OE, Sauer K. The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol 2012; 194:2904–2915 [View Article] [PubMed]
    [Google Scholar]
  88. Simm R, Morr M, Kader A, Nimtz M, Römling U. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 2004; 53:1123–1134 [View Article] [PubMed]
    [Google Scholar]
  89. Ueda A, Ogasawara S, Horiuchi K. Identification of the genes controlling biofilm formation in the plant commensal Pseudomonas protegens Pf-5. Arch Microbiol 2020; 202:2453–2459 [View Article] [PubMed]
    [Google Scholar]
  90. Newell PD, Yoshioka S, Hvorecny KL, Monds RD, O’Toole GA. Systematic analysis of diguanylate cyclases that promote biofilm formation by Pseudomonas fluorescens Pf0-1. J Bacteriol 2011; 193:4685–4698 [View Article] [PubMed]
    [Google Scholar]
  91. Petrova OE, Cherny KE, Sauer K. The Pseudomonas aeruginosa diguanylate cyclase GcbA, a homolog of P. fluorescens GcbA, promotes initial attachment to surfaces, but not biofilm formation, via regulation of motility. J Bacteriol 2014; 196:2827–2841 [View Article]
    [Google Scholar]
  92. Liu Y-F, Liao C-T, Song W-L, Hsu P-C, Du S-C et al. GsmR, a response regulator with an HD-related output domain in Xanthomonas campestris, is positively controlled by Clp and is involved in the expression of genes responsible for flagellum synthesis. FEBS J 2013; 280:199–213 [View Article] [PubMed]
    [Google Scholar]
  93. Hendrixson DR, Akerley BJ, DiRita VJ. Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 2001; 40:214–224 [View Article] [PubMed]
    [Google Scholar]
  94. Xiao Y, Wang P, Zhu X, Xie Z. Pseudomonas donghuensis HYS gtrA/B/II gene cluster contributes to its pathogenicity toward Caenorhabditis elegans. IJMS 2021; 22:10741 [View Article]
    [Google Scholar]
  95. Gallarato LA, Sánchez DG, Olvera L, Primo ED, Garrido MN et al. Exopolyphosphatase of Pseudomonas aeruginosa is essential for the production of virulence factors, and its expression is controlled by NtrC and PhoB acting at two interspaced promoters. Microbiology 2014; 160:406–417 [View Article]
    [Google Scholar]
  96. Santos-Beneit F. The Pho regulon: a huge regulatory network in bacteria. Front Microbiol 2015; 6:1–13 [View Article]
    [Google Scholar]
  97. Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE et al. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 2007; 14:53–63 [View Article] [PubMed]
    [Google Scholar]
  98. Bains M, Fernández L, Hancock REW. Phosphate starvation promotes swarming motility and cytotoxicity of Pseudomonas aeruginosa. Appl Environ Microbiol 2012; 78:6762–6768 [View Article] [PubMed]
    [Google Scholar]
  99. Blus-Kadosh I, Zilka A, Yerushalmi G, Banin E. The effect of pstS and phoB on quorum sensing and swarming motility in Pseudomonas aeruginosa. PLoS One 2013; 8:e74444 [View Article] [PubMed]
    [Google Scholar]
  100. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012; 28:464–469 [View Article]
    [Google Scholar]
  101. Wickham H. Ggplot2: Elegant Graphics for Data Analysis Cham: Springer-Verlag; 2016 [View Article]
    [Google Scholar]
  102. Ahlmann-Eltze C, Patil I. ggsignif: R package for displaying significance brackets for “ggplot2.”. PsyArXiv 2021 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001212
Loading
/content/journal/mgen/10.1099/mgen.0.001212
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error