1887

Abstract

spp. are associated with a number of infectious syndromes in humans including gastroenteritis and dysentery. Our understanding of the genetic diversity, population structure, virulence determinants and antimicrobial resistance of the genus has been limited by a lack of sequenced genomes linked to metadata. We performed a comprehensive analysis of the whole genome sequences of 447 isolates from children in Karachi, Pakistan, with moderate-to-severe diarrhoea (MSD) and from matched controls without diarrhoea that were collected as part of the Global Enteric Multicenter Study (GEMS). Human-associated isolates exhibited high species diversity and extensive antimicrobial and virulence gene content. , , and were all significantly associated with MSD in at least one cohort group. The and genes that encode components of polar and lateral flagella, respectively, exhibited a weak association with isolates originating from cases of gastroenteritis.

Keyword(s): Aeromonas , AMR , diarrhoea , GEMS , genomics , Pakistan and virulence
Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/X011011/1)
    • Principle Award Recipient: RobertA Kingsley
  • Biotechnology and Biological Sciences Research Council (Award BB/R012504/1)
    • Principle Award Recipient: RobertA Kingsley
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001211
2024-03-07
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/3/mgen001211.html?itemId=/content/journal/mgen/10.1099/mgen.0.001211&mimeType=html&fmt=ahah

References

  1. Janda JM, Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 2010; 23:35–73 [View Article] [PubMed]
    [Google Scholar]
  2. Fernández-Bravo A, Figueras MJ. An update on the genus Aeromonas: taxonomy, epidemiology, and pathogenicity. Microorganisms 2020; 8:129 [View Article] [PubMed]
    [Google Scholar]
  3. Sadique A, Neogi SB, Bashar T, Sultana M, Johura F-T et al. Dynamics, diversity, and virulence of Aeromonas spp. in homestead pond water in Coastal Bangladesh. Front Public Health 2021; 9:692166 [View Article] [PubMed]
    [Google Scholar]
  4. Igbinosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI. Emerging Aeromonas species infections and their significance in public health. Sci World J 2012; 2012:625023 [View Article] [PubMed]
    [Google Scholar]
  5. Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR. Virulence factors of Aeromonas hydrophila: in the wake of reclassification. Front Microbiol 2016; 7:1337 [View Article] [PubMed]
    [Google Scholar]
  6. Teunis P, Figueras MJ. Reassessment of the enteropathogenicity of mesophilic Aeromonas species. Front Microbiol 2016; 7:1395 [View Article] [PubMed]
    [Google Scholar]
  7. Morgan DR, Johnson PC, DuPont HL, Satterwhite TK, Wood LV. Lack of correlation between known virulence properties of Aeromonas hydrophila and enteropathogenicity for humans. Infect Immun 1985; 50:62–65 [View Article] [PubMed]
    [Google Scholar]
  8. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 2013; 382:209–222 [View Article] [PubMed]
    [Google Scholar]
  9. Qamar FN, Nisar MI, Quadri F, Shakoor S, Sow SO et al. Aeromonas-associated diarrhea in children under 5 years: the GEMS experience. Am J Trop Med Hyg 2016; 95:774–780 [View Article] [PubMed]
    [Google Scholar]
  10. Yuwono C, Wehrhahn MC, Liu F, Zhang L. Enteric Aeromonas infection: a common enteric bacterial infection with a novel infection pattern detected in an Australian population with Gastroenteritis. Microbiol Spectr 2023; 11:e0028623 [View Article] [PubMed]
    [Google Scholar]
  11. Colwell RR, Macdonell MT, De Ley J. Proposal to recognize the family Aeromonadaceae fam. nov. Int J Syst Bacteriol 1986; 36:473–477 [View Article]
    [Google Scholar]
  12. Martinez-Murcia AJ, Monera A, Saavedra MJ, Oncina R, Lopez-Alvarez M et al. Multilocus phylogenetic analysis of the genus Aeromonas. Syst Appl Microbiol 2011; 34:189–199 [View Article] [PubMed]
    [Google Scholar]
  13. Martino ME, Fasolato L, Montemurro F, Rosteghin M, Manfrin A et al. Determination of microbial diversity of Aeromonas strains on the basis of multilocus sequence typing, phenotype, and presence of putative virulence genes. Appl Environ Microbiol 2011; 77:4986–5000 [View Article] [PubMed]
    [Google Scholar]
  14. Roger F, Marchandin H, Jumas-Bilak E, Kodjo A, Lamy B et al. Multilocus genetics to reconstruct aeromonad evolution. BMC Microbiol 2012; 12:62 [View Article] [PubMed]
    [Google Scholar]
  15. Navarro A, Martínez-Murcia A. Phylogenetic analyses of the genus Aeromonas based on housekeeping gene sequencing and its influence on systematics. J Appl Microbiol 2018; 125:622–631 [View Article] [PubMed]
    [Google Scholar]
  16. Colston SM, Fullmer MS, Beka L, Lamy B, Gogarten JP et al. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. mBio 2014; 5:e02136 [View Article] [PubMed]
    [Google Scholar]
  17. Beaz-Hidalgo R, Agüeria D, Latif-Eugenín F, Yeannes MI, Figueras MJ. Molecular characterization of Shewanella and Aeromonas isolates associated with spoilage of common carp (Cyprinus carpio). FEMS Microbiol Lett 2015; 362:1–8 [View Article] [PubMed]
    [Google Scholar]
  18. Beatson SA, das Graças de Luna M, Bachmann NL, Alikhan N-F, Hanks KR et al. Genome sequence of the emerging pathogen Aeromonas caviae. J Bacteriol 2011; 193:1286–1287 [View Article] [PubMed]
    [Google Scholar]
  19. Grim CJ, Kozlova EV, Ponnusamy D, Fitts EC, Sha J et al. Functional genomic characterization of virulence factors from necrotizing fasciitis-causing strains of Aeromonas hydrophila. Appl Environ Microbiol 2014; 80:4162–4183 [View Article] [PubMed]
    [Google Scholar]
  20. Grim CJ, Kozlova EV, Sha J, Fitts EC, van Lier CJ et al. Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes. mBio 2013; 4:e00064-13 [View Article] [PubMed]
    [Google Scholar]
  21. Pang M, Jiang J, Xie X, Wu Y, Dong Y et al. Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep 2015; 5:9833 [View Article] [PubMed]
    [Google Scholar]
  22. Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genom 2016; 2:e000083 [View Article] [PubMed]
    [Google Scholar]
  23. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  24. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016; 32:2103–2110 [View Article] [PubMed]
    [Google Scholar]
  25. Sommer DD, Delcher AL, Salzberg SL, Pop M. Minimus: a fast, lightweight genome assembler. BMC Bioinformatics 2007; 8:64 [View Article] [PubMed]
    [Google Scholar]
  26. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  27. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article] [PubMed]
    [Google Scholar]
  28. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article] [PubMed]
    [Google Scholar]
  29. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res 2016; 44:D694–D697 [View Article] [PubMed]
    [Google Scholar]
  30. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  31. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013; 57:3348–3357 [View Article] [PubMed]
    [Google Scholar]
  32. Hadfield J, Croucher NJ, Goater RJ, Abudahab K, Aanensen DM et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 2018; 34:292–293 [View Article] [PubMed]
    [Google Scholar]
  33. Canals R, Vilches S, Wilhelms M, Shaw JG, Merino S et al. Non-structural flagella genes affecting both polar and lateral flagella-mediated motility in Aeromonas hydrophila. Microbiology 2007; 153:1165–1175 [View Article] [PubMed]
    [Google Scholar]
  34. Gavín R, Rabaan AA, Merino S, Tomás JM, Gryllos I et al. Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol Microbiol 2002; 43:383–397 [View Article] [PubMed]
    [Google Scholar]
  35. Vilches S, Urgell C, Merino S, Chacón MR, Soler L et al. Complete type III secretion system of a mesophilic Aeromonas hydrophila strain. Appl Environ Microbiol 2004; 70:6914–6919 [View Article] [PubMed]
    [Google Scholar]
  36. Wu C-J, Chen P-L, Wu J-J, Yan J-J, Lee C-C et al. Distribution and phenotypic and genotypic detection of a metallo-β-lactamase, CphA, among bacteraemic Aeromonas isolates. J Med Microbiol 2012; 61:712–719 [View Article] [PubMed]
    [Google Scholar]
  37. Chen PL, Lamy B, Ko WC. Aeromonas dhakensis, an increasingly recognized human pathogen. Front Microbiol 2016; 7:793 [View Article] [PubMed]
    [Google Scholar]
  38. Silva LCA da, Leal-Balbino TC, Melo BST de, Mendes-Marques CL, Rezende AM et al. Genetic diversity and virulence potential of clinical and environmental Aeromonas spp. isolates from a diarrhea outbreak. BMC Microbiol 2017; 17:179 [View Article] [PubMed]
    [Google Scholar]
  39. Tsolis RM, Bäumler AJ. Gastrointestinal host-pathogen interaction in the age of microbiome research. Curr Opin Microbiol 2020; 53:78–89 [View Article] [PubMed]
    [Google Scholar]
  40. Strauss EJ, Falkow S. Microbial pathogenesis: genomics and beyond. Science 1997; 276:707–712 [View Article] [PubMed]
    [Google Scholar]
  41. Sha J, Rosenzweig JA, Kozlova EV, Wang S, Erova TE et al. Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology 2013; 159:1120–1135 [View Article] [PubMed]
    [Google Scholar]
  42. Litvak Y, Byndloss MX, Tsolis RM, Bäumler AJ. Dysbiotic proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol 2017; 39:1–6 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001211
Loading
/content/journal/mgen/10.1099/mgen.0.001211
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error