1887

Abstract

Despite the notable clinical impact, recent molecular epidemiology regarding third-generation-cephalosporin-resistant (3GC-R) in the USA remains limited. We performed whole-genome sequencing of 3GC-R bacteraemia isolates collected from March 2016 to May 2022 at a tertiary care cancer centre in Houston, TX, USA, using Illumina and Oxford Nanopore Technologies platforms. A comprehensive comparative genomic analysis was performed to dissect population structure, transmission dynamics and pan-genomic signatures of our 3GC-R . population. Of the 178 3GC-R bacteraemias that occurred during our study time frame, we were able to analyse 153 (86 %) bacteraemia isolates, 126 initial and 27 recurrent isolates. While isolates belonging to the widely prevalent clonal group (CG) 258 were rarely observed, the predominant CG, 307, accounted for 37 (29 %) index isolates and displayed a significant correlation (Pearson correlation test value=0.03) with the annual frequency of 3GC-R . bacteraemia. Interestingly, only 11 % (4/37) of CG307 isolates belonged to the commonly detected ‘Texas-specific’ clade that has been observed in previous Texas-based antimicrobial-resistance surveillance studies. We identified nearly half of our CG307 isolates (=18) belonged to a novel, monophyletic CG307 sub-clade characterized by the chromosomally encoded and unique accessory genome content. This CG307 sub-clade was detected in various regions of the USA, with genome sequences from 24 additional strains becoming recently available in the National Center for Biotechnology Information (NCBI) SRA database. Collectively, this study underscores the emergence and dissemination of a distinct CG307 sub-clade that is a prevalent cause of 3GC-R . bacteraemia among cancer patients seen in Houston, TX, and has recently been isolated throughout the USA.

Funding
This study was supported by the:
  • National Institute of Allergy and Infectious Diseases (Award P01AI152999)
    • Principle Award Recipient: SamuelA Shelburne
  • National Institute of Allergy and Infectious Diseases (Award R21AI151536)
    • Principle Award Recipient: SamuelA Shelburne
  • National Institute of Allergy and Infectious Diseases (Award T32 AI141349)
    • Principle Award Recipient: WilliamCharles Shropshire
  • Peter and Cynthia Hu scholarship
    • Principle Award Recipient: Chin-TingWu
  • Dell Family Fund for the School of Health Professional scholarship
    • Principle Award Recipient: SelvalakshmiSelvaraj Anand
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001201
2024-02-26
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/2/mgen001201.html?itemId=/content/journal/mgen/10.1099/mgen.0.001201&mimeType=html&fmt=ahah

References

  1. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 2022; 399:629–655 [View Article]
    [Google Scholar]
  2. Mohd Asri NA, Ahmad S, Mohamud R, Mohd Hanafi N, Mohd Zaidi NF et al. Global prevalence of nosocomial multidrug-resistant Klebsiella pneumoniae: a systematic review and meta-analysis. Antibiotics 2021; 10:1508 [View Article] [PubMed]
    [Google Scholar]
  3. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 2015; 112:E3574–E3581 [View Article] [PubMed]
    [Google Scholar]
  4. Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Microbiol 2020; 18:344–359 [View Article] [PubMed]
    [Google Scholar]
  5. Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 2009; 53:3365–3370 [View Article] [PubMed]
    [Google Scholar]
  6. Bowers JR, Kitchel B, Driebe EM, MacCannell DR, Roe C et al. Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae pandemic. PLoS One 2015; 10:e0133727 [View Article] [PubMed]
    [Google Scholar]
  7. Castanheira M, Farrell SE, Wanger A, Rolston KV, Jones RN et al. Rapid expansion of KPC-2-producing Klebsiella pneumoniae isolates in two Texas hospitals due to clonal spread of ST258 and ST307 lineages. Microb Drug Resist 2013; 19:295–297 [View Article] [PubMed]
    [Google Scholar]
  8. Villa L, Feudi C, Fortini D, Brisse S, Passet V et al. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb Genom 2017; 3:e000110 [View Article] [PubMed]
    [Google Scholar]
  9. Long SW, Olsen RJ, Eagar TN, Beres SB, Zhao P et al. Population genomic analysis of 1,777 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates. MBio 2017; 8:e00489-17 [View Article]
    [Google Scholar]
  10. Wyres KL, Hawkey J, Hetland MAK, Fostervold A, Wick RR et al. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J Antimicrob Chemother 2019; 74577–581 [View Article]
    [Google Scholar]
  11. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 2007; 20:440–458 [View Article] [PubMed]
    [Google Scholar]
  12. Castanheira M, Kimbrough JH, DeVries S, Mendes RE, Sader HS. Trends of β-lactamase occurrence among Escherichia coli and Klebsiella pneumoniae in United States hospitals during a 5-year period and activity of antimicrobial agents against isolates stratified by β-lactamase type. Open Forum Infect Dis 2023; 10:ofad038 [View Article] [PubMed]
    [Google Scholar]
  13. Rojas LJ, Weinstock GM, De La Cadena E, Diaz L, Rios R et al. An analysis of the epidemic of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: convergence of two evolutionary mechanisms creates the “perfect storm.”. J Infect Dis 2017; 217:82–92 [View Article] [PubMed]
    [Google Scholar]
  14. Wang M, Earley M, Chen L, Hanson BM, Yu Y et al. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): a prospective, multicentre, cohort study. Lancet Infect Dis 2022; 22:401–412 [View Article] [PubMed]
    [Google Scholar]
  15. David S, Reuter S, Harris SR, Glasner C, Feltwell T et al. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol 2019; 4:1919–1929 [View Article] [PubMed]
    [Google Scholar]
  16. Cerqueira GC, Earl AM, Ernst CM, Grad YH, Dekker JP et al. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks. Proc Natl Acad Sci U S A 2017; 114:1135–1140 [View Article] [PubMed]
    [Google Scholar]
  17. Satlin MJ, Chen L, Patel G, Gomez-Simmonds A, Weston G et al. Multicenter clinical and molecular epidemiological analysis of bacteremia due to carbapenem-resistant Enterobacteriaceae (CRE) in the CRE epicenter of the United States. Antimicrob Agents Chemother 2017; 61:e02349-16 [View Article] [PubMed]
    [Google Scholar]
  18. van Duin D, Arias CA, Komarow L, Chen L, Hanson BM et al. Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): a prospective cohort study. Lancet Infect Dis 2020; 20:731–741 [View Article] [PubMed]
    [Google Scholar]
  19. Deleo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD et al. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2014; 111:4988–4993 [View Article] [PubMed]
    [Google Scholar]
  20. Shropshire WC, Dinh AQ, Earley M, Komarow L, Panesso D et al. Accessory genomes drive independent spread of carbapenem-resistant Klebsiella pneumoniae clonal groups 258 and 307 in Houston, TX. mBio 2022; 13:e0049722 [View Article] [PubMed]
    [Google Scholar]
  21. Shropshire WC, Konovalova A, McDaneld P, Gohel M, Strope B et al. Systematic analysis of mobile genetic elements mediating β-lactamase gene amplification in noncarbapenemase-producing carbapenem-resistant Enterobacterales bloodstream infections. mSystems 2022; 7:e0047622 [View Article] [PubMed]
    [Google Scholar]
  22. Fostervold A, Hetland MAK, Bakksjø R, Bernhoff E, Holt KE et al. A nationwide genomic study of clinical Klebsiella pneumoniae in Norway 2001-15: introduction and spread of ESBLs facilitated by clonal groups CG15 and CG307. J Antimicrob Chemother 2022; 77:665–674 [View Article] [PubMed]
    [Google Scholar]
  23. David S, Mentasti M, Sands K, Portal E, Graham L et al. Genomic surveillance of multidrug-resistant Klebsiella in Wales reveals persistent spread of Klebsiella pneumoniae ST307 and adaptive evolution of pOXA-48-like plasmids. Microb Genom 2023; 9:001016 [View Article] [PubMed]
    [Google Scholar]
  24. Heiden SE, Hübner N-O, Bohnert JA, Heidecke C-D, Kramer A et al. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance, hypermucoviscosity, and enhanced iron acquisition. Genome Med 2020; 12:113 [View Article] [PubMed]
    [Google Scholar]
  25. Black CA, So W, Dallas SS, Gawrys G, Benavides R et al. Predominance of non-carbapenemase producing carbapenem-resistant Enterobacterales in South Texas. Front Microbiol 2020; 11:623574 [View Article] [PubMed]
    [Google Scholar]
  26. Parker JK, Gu R, Estrera GA, Kirkpatrick B, Rose DT et al. Carbapenem-resistant and ESBL-producing enterobacterales emerging in Central Texas. Infect Drug Resist 2023; 16:1249–1261 [View Article] [PubMed]
    [Google Scholar]
  27. CLSI Performance Standards for Antimicrobial Susceptibility Testing, 33rd edn Wayne, PA: Clinical and Laboratory Standards Institute; 2023
    [Google Scholar]
  28. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  29. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 2021; 12:4188 [View Article] [PubMed]
    [Google Scholar]
  30. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2016; 2:e000102 [View Article] [PubMed]
    [Google Scholar]
  31. Hennart M, Guglielmini J, Bridel S, Maiden MCJ, Jolley KA et al. A dual barcoding approach to bacterial strain nomenclature: genomic taxonomy of Klebsiella pneumoniae strains. Mol Biol Evol 2022; 39:msac135 [View Article] [PubMed]
    [Google Scholar]
  32. Clausen P, Zankari E, Aarestrup FM, Lund O. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. J Antimicrob Chemother 2016; 71:2484–2488 [View Article] [PubMed]
    [Google Scholar]
  33. Clausen P, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics 2018; 19:307 [View Article] [PubMed]
    [Google Scholar]
  34. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES et al. Integrative genomics viewer. Nat Biotechnol 2011; 29:24–26 [View Article] [PubMed]
    [Google Scholar]
  35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  36. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  37. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  38. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  39. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  40. Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res 2019; 29:304–316 [View Article]
    [Google Scholar]
  41. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: an R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res 2018; 3:93 [View Article] [PubMed]
    [Google Scholar]
  42. Grant JR, Enns E, Marinier E, Mandal A, Herman EK et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 2023; 51:W484–W492 [View Article] [PubMed]
    [Google Scholar]
  43. Shropshire WC, Strope B, Selvaraj Anand S, Bremer J, McDaneld P et al. Temporal dynamics of genetically heterogeneous extended-spectrum cephalosporin-resistant Escherichia coli bloodstream infections. mSphere 2023; 8:e0018323 [View Article] [PubMed]
    [Google Scholar]
  44. Lam MMC, Wick RR, Wyres KL, Gorrie CL, Judd LM et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. Microb Genom 2018; 4:e000196 [View Article] [PubMed]
    [Google Scholar]
  45. Beceiro A, Maharjan S, Gaulton T, Doumith M, Soares NC et al. False extended-spectrum β-lactamase phenotype in clinical isolates of Escherichia coli associated with increased expression of OXA-1 or TEM-1 penicillinases and loss of porins. J Antimicrob Chemother 2011; 66:2006–2010 [View Article] [PubMed]
    [Google Scholar]
  46. Wiener ES, Heil EL, Hynicka LM, Johnson JK. Are fluoroquinolones appropriate for the treatment of extended-spectrum β-lactamase-producing Gram-negative bacilli?. J Pharm Technol 2016; 32:16–21 [View Article] [PubMed]
    [Google Scholar]
  47. Weber A, Neffe L, Diaz LAP, Thoma N, Aghdassi SJS et al. Analysis of transmission-related third-generation cephalosporin-resistant Enterobacterales by electronic data mining and core genome multi-locus sequence typing. J Hosp Infect 2023; 140:96–101 [View Article] [PubMed]
    [Google Scholar]
  48. Gorrie CL, Mirčeta M, Wick RR, Judd LM, Lam MMC et al. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat Commun 2022; 13:3017 [View Article] [PubMed]
    [Google Scholar]
  49. Jernigan JA, Hatfield KM, Wolford H, Nelson RE, Olubajo B et al. Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012–2017. N Engl J Med 2020; 382:1309–1319 [View Article] [PubMed]
    [Google Scholar]
  50. Arcari G, Carattoli A. Global spread and evolutionary convergence of multidrug-resistant and hypervirulent Klebsiella pneumoniae high-risk clones. Pathog Glob Health 2023; 117:328–341 [View Article] [PubMed]
    [Google Scholar]
  51. Ljungquist O, Haldorsen B, Pöntinen AK, Janice J, Josefsen EH et al. Nationwide, population-based observational study of the molecular epidemiology and temporal trend of carbapenemase-producing Enterobacterales in Norway, 2015 to 2021. Euro Surveill 2023; 28:2200774 [View Article] [PubMed]
    [Google Scholar]
  52. Garcia-Gonzalez N, Fuster B, Tormo N, Salvador C, Gimeno C et al. Genomic analysis of the initial dissemination of carbapenem-resistant Klebsiella pneumoniae clones in a tertiary hospital. Microb Genom 2023; 9:001032 [View Article] [PubMed]
    [Google Scholar]
  53. Thorpe HA, Booton R, Kallonen T, Gibbon MJ, Couto N et al. A large-scale genomic snapshot of Klebsiella spp. isolates in Northern Italy reveals limited transmission between clinical and non-clinical settings. Nat Microbiol 2022; 7:2054–2067 [View Article] [PubMed]
    [Google Scholar]
  54. Kochan TJ, Nozick SH, Medernach RL, Cheung BH, Gatesy SWM et al. Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates. BMC Infect Dis 2022; 22:603 [View Article] [PubMed]
    [Google Scholar]
  55. McDanel J, Schweizer M, Crabb V, Nelson R, Samore M et al. Incidence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella infections in the United States: a systematic literature review. Infect Control Hosp Epidemiol 2017; 38:1209–1215 [View Article] [PubMed]
    [Google Scholar]
  56. Duffy N, Karlsson M, Reses HE, Campbell D, Daniels J et al. Epidemiology of extended-spectrum β-lactamase-producing Enterobacterales in five US sites participating in the Emerging Infections Program, 2017. Infect Control Hosp Epidemiol 2022; 43:1586–1594 [View Article] [PubMed]
    [Google Scholar]
  57. Anderson DJ, Richet H, Chen LF, Spelman DW, Hung Y-J et al. Seasonal variation in Klebsiella pneumoniae bloodstream infection on 4 continents. J Infect Dis 2008; 197:752–756 [View Article] [PubMed]
    [Google Scholar]
  58. de la Court JR, Woudt SHS, Schoffelen AF, Heijmans J, de Jonge NA et al. Third-generation cephalosporin resistant gram-negative bacteraemia in patients with haematological malignancy; an 11-year multi-centre retrospective study. Ann Clin Microbiol Antimicrob 2022; 21:54 [View Article]
    [Google Scholar]
  59. Gorrie CL, Mirceta M, Wick RR, Judd LM, Wyres KL et al. Antimicrobial-resistant Klebsiella pneumoniae carriage and infection in specialized geriatric care wards linked to acquisition in the referring hospital. Clin Infect Dis 2018; 67:161–170 [View Article] [PubMed]
    [Google Scholar]
  60. Diorio-Toth L, Wallace MA, Farnsworth CW, Wang B, Gul D et al. Intensive care unit sinks are persistently colonized with multidrug resistant bacteria and mobilizable, resistance-conferring plasmids. mSystems 2023; 8:e0020623 [View Article] [PubMed]
    [Google Scholar]
  61. El Haddad L, Hanson BM, Arias CA, Ghantoji SS, Harb CP et al. Emergence and transmission of daptomycin and vancomycin-resistant enterococci between patients and hospital rooms. Clin Infect Dis 2021; 73:2306–2313 [View Article] [PubMed]
    [Google Scholar]
  62. Sundermann AJ, Chen J, Kumar P, Ayres AM, Cho ST et al. Whole-genome sequencing surveillance and machine learning of the electronic health record for enhanced healthcare outbreak detection. Clin Infect Dis 2022; 75:476–482 [View Article] [PubMed]
    [Google Scholar]
  63. Mert D, Iskender G, Kolgelier S, Ertek M. Evaluation of risk factors, causative pathogens, and treatment in recurrent percutaneous nephrostomy catheter-related urinary tract infections in cancer patients. Medicine 2023; 102:e33002 [View Article] [PubMed]
    [Google Scholar]
  64. Refay SM, Ahmed EH, Abd ELzaher AR, Morsy AM, Yasser MM et al. Risk of drug resistance and repeated infection with Klebsiella pneumoniae and Escherichia coli in intensive care unit cancer patients. Comb Chem High Throughput Screen 2022; 25:324–334 [View Article] [PubMed]
    [Google Scholar]
  65. Djukovic A, González-Barberá EM, Sanz J, Artacho A, Peñaranda I et al. High heterogeneity of multidrug-resistant Enterobacteriaceae fecal levels in hospitalized patients is partially driven by intravenous β-lactams. Antimicrob Agents Chemother 2020; 64:e01415-19 [View Article] [PubMed]
    [Google Scholar]
  66. Gundes S, Arisoy AE, Kolayli F, Karaali E, Turker G et al. An outbreak of SHV-5 producing Klebsiella pneumoniae in a neonatal intensive care unit; meropenem failed to avoid fecal colonization. New Microbiol 2005; 28:231–236 [PubMed]
    [Google Scholar]
  67. Murtha AN, Kazi MI, Schargel RD, Cross T, Fihn C et al. High-level carbapenem tolerance requires antibiotic-induced outer membrane modifications. PLoS Pathog 2022; 18:e1010307 [View Article] [PubMed]
    [Google Scholar]
  68. Herrera S, Torralbo B, Herranz S, Bernal-Maurandi J, Rubio E et al. Carriage of multidrug-resistant Gram-negative bacilli: duration and risk factors. Eur J Clin Microbiol Infect Dis 2023; 42:631–638 [View Article] [PubMed]
    [Google Scholar]
  69. Campos-Madueno EI, Moradi M, Eddoubaji Y, Shahi F, Moradi S et al. Intestinal colonization with multidrug-resistant Enterobacterales: screening, epidemiology, clinical impact, and strategies to decolonize carriers. Eur J Clin Microbiol Infect Dis 2023; 42:229–254 [View Article] [PubMed]
    [Google Scholar]
  70. Roshika R, Jain I, Medicielo J, Wächter J, Danger JL et al. The RD2 pathogenicity Island modifies the disease potential of the group A Streptococcus. Infect Immun 2021; 89:e0072220 [View Article] [PubMed]
    [Google Scholar]
  71. Vega LA, Sanson MA, Cubria MB, Regmi S, Shah BJ et al. The integrative conjugative element ICESpyM92 contributes to pathogenicity of emergent antimicrobial-resistant emm92 group A Streptococcus. Infect Immun 2022; 90:e0008022 [View Article] [PubMed]
    [Google Scholar]
  72. Wong Fok Lung T, Charytonowicz D, Beaumont KG, Shah SS, Sridhar SH et al. Klebsiella pneumoniae induces host metabolic stress that promotes tolerance to pulmonary infection. Cell Metab 2022; 34:761–774 [View Article] [PubMed]
    [Google Scholar]
  73. Merciecca T, Bornes S, Nakusi L, Theil S, Rendueles O et al. Role of Klebsiella pneumoniae type VI secretion system (T6SS) in long-term gastrointestinal colonization. Sci Rep 2022; 12:16968 [View Article] [PubMed]
    [Google Scholar]
  74. Storey D, McNally A, Åstrand M, Sa-Pessoa Graca Santos J, Rodriguez-Escudero I et al. Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog 2020; 16:e1007969 [View Article] [PubMed]
    [Google Scholar]
  75. Wang H, Guo Y, Liu Z, Chang Z. The type VI secretion system contributes to the invasiveness of liver abscess caused by Klebsiella pneumoniae. J Infect Dis 2023; 228:1127–1136 [View Article] [PubMed]
    [Google Scholar]
  76. Li W, Liu X, Tsui W, Xu A, Li D et al. Identification and comparative genomic analysis of type VI secretion systems and effectors in Klebsiella pneumoniae. Front Microbiol 2022; 13:853744 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001201
Loading
/content/journal/mgen/10.1099/mgen.0.001201
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error