1887

Abstract

Archamoebae comprises free-living or endobiotic amoebiform protists that inhabit anaerobic or microaerophilic environments and possess mitochondrion-related organelles (MROs) adapted to function anaerobically. We compared reconstructed MRO proteomes of eight species (six genera) and found that the common ancestor of Archamoebae possessed very few typical components of the protein translocation machinery, electron transport chain and tricarboxylic acid cycle. On the other hand, it contained a sulphate activation pathway and bacterial iron–sulphur (Fe-S) assembly system of MIS-type. The metabolic capacity of the MROs, however, varies markedly within this clade. The glycine cleavage system is widely conserved among Archamoebae, except in , probably owing to its role in catabolic function or one-carbon metabolism. MRO-based pyruvate metabolism was dispensed within subgroups Entamoebidae and Rhizomastixidae, whereas sulphate activation could have been lost in isolated cases of , and sp. The MIS (Fe-S) assembly system was duplicated in the common ancestor of Mastigamoebidae and Pelomyxidae, and one of the copies took over Fe-S assembly in their MRO. In Entamoebidae and Rhizomastixidae, we hypothesize that Fe-S cluster assembly in both compartments may be facilitated by dual localization of the single system. We could not find evidence for changes in metabolic functions of the MRO in response to changes in habitat; it appears that such environmental drivers do not strongly affect MRO reduction in this group of eukaryotes.

Funding
This study was supported by the:
  • Ministerstvo Školství, Mládeže a Tělovýchovy (Award 90254)
    • Principle Award Recipient: NotApplicable
  • Canadian Institutes of Health Research (Award FRN-142349)
    • Principle Award Recipient: AndrewJ. Roger
  • Grantová Agentura České Republiky (Award 23-06004S)
    • Principle Award Recipient: IvanČepička
  • Ministerstvo Školství, Mládeže a Tělovýchovy (Award CZ.02.1.01/0.0/0.0/16_019/0000759)
    • Principle Award Recipient: JanTachezy
  • H2020 European Research Council (Award 771592)
    • Principle Award Recipient: VladimírHampl
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001143
2023-11-23
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/11/mgen001143.html?itemId=/content/journal/mgen/10.1099/mgen.0.001143&mimeType=html&fmt=ahah

References

  1. Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteomics 2014; 109:400–416 [View Article] [PubMed]
    [Google Scholar]
  2. Atteia A, Adrait A, Brugière S, Tardif M, van Lis R et al. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol 2009; 26:1533–1548 [View Article] [PubMed]
    [Google Scholar]
  3. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008; 134:112–123 [View Article] [PubMed]
    [Google Scholar]
  4. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G et al. Saccharomyces genome database: the genomics resource of budding yeast. Nucleic Acids Res 2012; 40:D700–5 [View Article] [PubMed]
    [Google Scholar]
  5. Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA et al. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 2009; 9:434–450 [View Article] [PubMed]
    [Google Scholar]
  6. Smith DGS, Gawryluk RMR, Spencer DF, Pearlman RE, Siu KWM et al. Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J Mol Biol 2007; 374:837–863 [View Article] [PubMed]
    [Google Scholar]
  7. Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012; 76:444–495 [View Article] [PubMed]
    [Google Scholar]
  8. Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140326 [View Article] [PubMed]
    [Google Scholar]
  9. Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol 2017; 27:R1177–R1192 [View Article] [PubMed]
    [Google Scholar]
  10. Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A 2009; 106:21731–21736 [View Article] [PubMed]
    [Google Scholar]
  11. Beltrán NC, Horváthová L, Jedelský PL, Sedinová M, Rada P et al. Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS One 2013; 8:e65148 [View Article] [PubMed]
    [Google Scholar]
  12. Rada P, Doležal P, Jedelský PL, Bursac D, Perry AJ et al. The core components of organelle biogenesis and membrane transport in the hydrogenosomes of Trichomonas vaginalis. PLoS One 2011; 6:e24428 [View Article] [PubMed]
    [Google Scholar]
  13. Jedelský PL, Doležal P, Rada P, Pyrih J, Smíd O et al. The minimal proteome in the reduced mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 2011; 6:e17285 [View Article] [PubMed]
    [Google Scholar]
  14. Jerlström-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B et al. Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun 2013; 4:2493 [View Article] [PubMed]
    [Google Scholar]
  15. Fang Y-K, Chien K-Y, Huang K-Y, Cheng W-H, Ku F-M et al. Responding to a zoonotic emergency with multi-omics research: Pentatrichomonas hominis hydrogenosomal protein characterization with use of RNA sequencing and proteomics. OMICS 2016; 20:662–669 [View Article] [PubMed]
    [Google Scholar]
  16. Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD et al. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol 2011; 41:1421–1434 [View Article] [PubMed]
    [Google Scholar]
  17. Zítek J, Füssy Z, Treitli SC, Peña-Diaz P, Vaitová Z et al. Reduced mitochondria provide an essential function for the cytosolic methionine cycle. Curr Biol 2022; 32:5057–5068 [View Article] [PubMed]
    [Google Scholar]
  18. Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R et al. A eukaryote without a mitochondrial organelle. Curr Biol 2016; 26:1274–1284 [View Article] [PubMed]
    [Google Scholar]
  19. Cavalier-Smith T. Archamoebae: the ancestral eukaryotes?. Biosystems 1991; 25:25–38 [View Article] [PubMed]
    [Google Scholar]
  20. Walker G, Simpson AGB, Edgcomb V, Sogin ML, Patterson DJ. Ultrastructural identities of Mastigamoeba punctachora, Mastigamoeba simplex and Mastigella commutans and assessment of hypotheses of relatedness of the pelobionts (Protista). Eur J Protistol 2001; 37:25–49 [View Article]
    [Google Scholar]
  21. Constenla M, Padrós F, Palenzuela O. Endolimax piscium sp. nov. (Amoebozoa), causative agent of systemic granulomatous disease of cultured sole, Solea senegalensis Kaup. J Fish Dis 2014; 37:229–240 [View Article] [PubMed]
    [Google Scholar]
  22. Ptáčková E, Kostygov AY, Chistyakova LV, Falteisek L, Frolov AO et al. Evolution of Archamoebae: morphological and molecular evidence for pelobionts including Rhizomastix, Entamoeba, Iodamoeba, and Endolimax. Protist 2013; 164:380–410 [View Article] [PubMed]
    [Google Scholar]
  23. Zadrobílková E, Walker G, Čepička I. Morphological and molecular evidence support a close relationship between the free-living archamoebae Mastigella and Pelomyxa. Protist 2015; 166:14–41 [View Article] [PubMed]
    [Google Scholar]
  24. Zadrobílková E, Smejkalová P, Walker G, Čepička I. Morphological and molecular diversity of the neglected genus Rhizomastix Alexeieff, 1911 (Amoebozoa: Archamoebae) with description of five new species. J Eukaryot Microbiol 2016; 63:181–197 [View Article] [PubMed]
    [Google Scholar]
  25. Seravin L, Goodkov A. Cytoplasmic microbody-like granules of the amoeba Pelomyxa palustris. Tsitologiya 1987; 29:600–603
    [Google Scholar]
  26. Mi-ichi F, Miyamoto T, Takao S, Jeelani G, Hashimoto T et al. Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis. Proc Natl Acad Sci U S A 2015; 112:E2884–90 [View Article] [PubMed]
    [Google Scholar]
  27. Mi-ichi F, Makiuchi T, Furukawa A, Sato D, Nozaki T. Sulfate activation in mitosomes plays an important role in the proliferation of Entamoeba histolytica. PLoS Negl Trop Dis 2011; 5:e1263 [View Article] [PubMed]
    [Google Scholar]
  28. Nývltová E, Šuták R, Harant K, Šedinová M, Hrdy I et al. NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi. Proc Natl Acad Sci U S A 2013; 110:7371–7376 [View Article] [PubMed]
    [Google Scholar]
  29. Nývltová E, Stairs CW, Hrdý I, Rídl J, Mach J et al. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol 2015; 32:1039–1055 [View Article] [PubMed]
    [Google Scholar]
  30. Záhonová K, Treitli SC, Le T, Škodová-Sveráková I, Hanousková P et al. Anaerobic derivates of mitochondria and peroxisomes in the free-living amoeba Pelomyxa schiedti revealed by single-cell genomics. BMC Biol 2022; 20:56 [View Article] [PubMed]
    [Google Scholar]
  31. Walker G, Zadrobílková E, Čepička I. Archamoebae. In Archibald JM, Simpson AGB, Slamovits CH. eds Handbook of the Protists Cham: Springer International Publishing; 2017 pp 1349–1403 [View Article]
    [Google Scholar]
  32. Cepicka I, Hampl V, Kulda J, Flegr J. New evolutionary lineages, unexpected diversity, and host specificity in the parabasalid genus Tetratrichomonas. Mol Phylogenet Evol 2006; 39:542–551 [View Article] [PubMed]
    [Google Scholar]
  33. Kang S, Tice AK, Spiegel FW, Silberman JD, Pánek T et al. Between a pod and a hard test: the deep evolution of Amoebae. Mol Biol Evol 2017; 34:2258–2270 [View Article] [PubMed]
    [Google Scholar]
  34. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  35. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011; 29:644–652 [View Article] [PubMed]
    [Google Scholar]
  36. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  37. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  38. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 2021; 38:4647–4654 [View Article] [PubMed]
    [Google Scholar]
  39. Aurrecoechea C, Barreto A, Brestelli J, Brunk BP, Caler EV et al. AmoebaDB and MicrosporidiaDB: functional genomic resources for Amoebozoa and Microsporidia species. Nucleic Acids Res 2011; 39:D612–9 [View Article] [PubMed]
    [Google Scholar]
  40. Salas-Leiva DE, Tromer EC, Curtis BA, Jerlström-Hultqvist J, Kolisko M et al. Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat Commun 2021; 12:7350 [View Article] [PubMed]
    [Google Scholar]
  41. Barlow LD, Maciejowski W, More K, Terry K, Vargová R et al. Comparative genomics for evolutionary cell biology using AMOEBAE: understanding the Golgi and beyond. In Wang Y, Lupashin VV, Graham TR. eds Golgi: Methods and Protocols New York, NY: Springer US; 2023 pp 431–452 [View Article]
    [Google Scholar]
  42. Dolezal P, Dagley MJ, Kono M, Wolynec P, Likić VA et al. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog 2010; 6:e1000812 [View Article] [PubMed]
    [Google Scholar]
  43. Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance 2019; 2:e201900429 [View Article]
    [Google Scholar]
  44. Kume K, Amagasa T, Hashimoto T, Kitagawa H. NommPred: prediction of mitochondrial and mitochondrion-related organelle proteins of nonmodel organisms. Evol Bioinform Online 2018; 14:117693431881983 [View Article]
    [Google Scholar]
  45. Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics 2015; 14:1113–1126 [View Article] [PubMed]
    [Google Scholar]
  46. Blum T, Briesemeister S, Kohlbacher O. MultiLoc2: integrating phylogeny and gene ontology terms improves subcellular protein localization prediction. BMC Bioinformatics 2009; 10:274 [View Article] [PubMed]
    [Google Scholar]
  47. Small I, Peeters N, Legeai F, Lurin C. Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 2004; 4:1581–1590 [View Article] [PubMed]
    [Google Scholar]
  48. Hawkins J, Bodén M. Detecting and sorting targeting peptides with neural networks and support vector machines. J Bioinform Comput Biol 2006; 4:1–18 [View Article] [PubMed]
    [Google Scholar]
  49. Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins 2006; 64:643–651 [View Article] [PubMed]
    [Google Scholar]
  50. Thumuluri V, Almagro Armenteros JJ, Johansen AR, Nielsen H, Winther O. DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Res 2022; 50:W228–W234 [View Article] [PubMed]
    [Google Scholar]
  51. Patron NJ, Waller RF. Transit peptide diversity and divergence: a global analysis of plastid targeting signals. Bioessays 2007; 29:1048–1058 [View Article] [PubMed]
    [Google Scholar]
  52. Eddy SR. A new generation of homology search tools based onprobabilistic inference. Genome Inf 2009; 23:205–211 [View Article]
    [Google Scholar]
  53. Jones P, Binns D, Chang H-Y, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236–1240 [View Article] [PubMed]
    [Google Scholar]
  54. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1649 [View Article] [PubMed]
    [Google Scholar]
  55. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:157 [View Article] [PubMed]
    [Google Scholar]
  56. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article] [PubMed]
    [Google Scholar]
  57. Hall TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/ NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  58. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  59. Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK et al. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J 2022; 2:e56 [View Article]
    [Google Scholar]
  60. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  61. Edgar RC. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat Commun 2022; 13:6968 [View Article] [PubMed]
    [Google Scholar]
  62. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  63. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article] [PubMed]
    [Google Scholar]
  64. Tekle YI, Wang F, Wood FC, Anderson OR, Smirnov A. New insights on the evolutionary relationships between the major lineages of Amoebozoa. Sci Rep 2022; 12:11173 [View Article] [PubMed]
    [Google Scholar]
  65. Tice AK, Spiegel FW, Brown MW. Phylogenetic placement of the protosteloid amoeba Microglomus paxillus identifies another case of sporocarpic fruiting in Discosea (Amoebozoa). J Eukaryot Microbiol 2023; 70:e12971 [View Article] [PubMed]
    [Google Scholar]
  66. Garg S, Stölting J, Zimorski V, Rada P, Tachezy J et al. Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol Evol 2015; 7:2716–2726 [View Article] [PubMed]
    [Google Scholar]
  67. Dolezal P, Makki A, Dyall SD. Protein Import into hydrogenosomes and mitosomes. In Tachezy J. eds Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes, Microbiology Monographs vol 9 Cham: Springer; 2019 pp 31–84 [View Article]
    [Google Scholar]
  68. Garg SG, Gould SB. The role of charge in protein targeting evolution. Trends Cell Biol 2016; 26:894–905 [View Article] [PubMed]
    [Google Scholar]
  69. Šmíd O, Matušková A, Harris SR, Kučera T, Novotný M et al. Reductive evolution of the mitochondrial processing peptidases of the unicellular parasites Trichomonas vaginalis and Giardia intestinalis. PLoS Pathog 2008; 4:e1000243 [View Article]
    [Google Scholar]
  70. Bolender N, Sickmann A, Wagner R, Meisinger C, Pfanner N. Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep 2008; 9:42–49 [View Article] [PubMed]
    [Google Scholar]
  71. Laloraya S, Gambill BD, Craig EA. A role for a eukaryotic GrpE-related protein, Mge1p, in protein translocation. Proc Natl Acad Sci U S A 1994; 91:6481–6485 [View Article] [PubMed]
    [Google Scholar]
  72. Marada A, Allu PK, Murari A, PullaReddy B, Tammineni P et al. Mge1, a nucleotide exchange factor of Hsp70, acts as an oxidative sensor to regulate mitochondrial Hsp70 function. Mol Biol Cell 2013; 24:692–703 [View Article] [PubMed]
    [Google Scholar]
  73. Stairs CW, Eme L, Muñoz-Gómez SA, Cohen A, Dellaire G et al. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. Elife 2018; 7:e34292 [View Article] [PubMed]
    [Google Scholar]
  74. Gawryluk RMR, Stairs CW. Diversity of electron transport chains in anaerobic protists. Biochim Biophys Acta Bioenerg 2021; 1862:148334 [View Article] [PubMed]
    [Google Scholar]
  75. Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol 2017; 1:14 [View Article]
    [Google Scholar]
  76. Stairs CW, Táborský P, Salomaki ED, Kolisko M, Pánek T et al. Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr Biol 2021; 31:5605–5612 [View Article] [PubMed]
    [Google Scholar]
  77. Kikuchi G. The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1973; 1:169–187 [View Article] [PubMed]
    [Google Scholar]
  78. Kikuchi G, Motokawa Y, Yoshida T, Hiraga K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc Jpn Acad, Ser B 2008; 84:246–263 [View Article]
    [Google Scholar]
  79. Dale RA. Catabolism of threonine in mammals by coupling of L-threonine 3-dehydrogenase with 2-amino-3-oxobutyrate-CoA ligase. Biochim Biophys Acta 1978; 544:496–503 [View Article] [PubMed]
    [Google Scholar]
  80. Bird MI, Nunn PB, Lord LAJ. Formation of glycine and aminoacetone from L-threonine by rat liver mitochondria. Biochim Biophys Acta 1984; 802:229–236 [View Article] [PubMed]
    [Google Scholar]
  81. Struck AW, Thompson ML, Wong LS, Micklefield J. S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. Chembiochem 2012; 13:2642–2655 [View Article] [PubMed]
    [Google Scholar]
  82. Zaitsev AV, Martinov MV, Vitvitsky VM, Ataullakhanov FI. Rat liver folate metabolism can provide an independent functioning of associated metabolic pathways. Sci Rep 2019; 9:7657 [View Article] [PubMed]
    [Google Scholar]
  83. Lawrence SA, Titus SA, Ferguson J, Heineman AL, Taylor SM et al. Mammalian mitochondrial and cytosolic folylpolyglutamate synthetase maintain the subcellular compartmentalization of folates. J Biol Chem 2014; 289:29386–29396 [View Article] [PubMed]
    [Google Scholar]
  84. Land H, Senger M, Berggren G, Stripp ST. Current state of [FeFe]-hydrogenase research: biodiversity and spectroscopic investigations. ACS Catal 2020; 10:7069–7086 [View Article]
    [Google Scholar]
  85. Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochim Biophys Acta Mol Cell Res 2021; 1868:118863 [View Article] [PubMed]
    [Google Scholar]
  86. Tsaousis AD. On the origin of iron/sulfur cluster biosynthesis in eukaryotes. Front Microbiol 2019; 10:2478 [View Article] [PubMed]
    [Google Scholar]
  87. Garcia PS, D’Angelo F, Ollagnier de Choudens S, Dussouchaud M, Bouveret E et al. An early origin of iron-sulfur cluster biosynthesis machineries before Earth oxygenation. Nat Ecol Evol 2022; 6:1564–1572 [View Article] [PubMed]
    [Google Scholar]
  88. Maralikova B, Ali V, Nakada-Tsukui K, Nozaki T, van der Giezen M et al. Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol 2010; 12:331–342 [View Article] [PubMed]
    [Google Scholar]
  89. Pyrih J, Pyrihová E, Kolísko M, Stojanovová D, Basu S et al. Minimal cytosolic iron-sulfur cluster assembly machinery of Giardia intestinalis is partially associated with mitosomes. Mol Microbiol 2016; 102:701–714 [View Article] [PubMed]
    [Google Scholar]
  90. Mi-ichi F, Nozawa A, Yoshida H, Tozawa Y, Nozaki T. Evidence that the Entamoeba histolytica mitochondrial carrier family links mitosomal and cytosolic pathways through exchange of 3′-phosphoadenosine 5′-phosphosulfate and ATP. Eukaryot Cell 2015; 14:1144–1150 [View Article]
    [Google Scholar]
  91. Ashykhmina N, Lorenz M, Frerigmann H, Koprivova A, Hofsetz E et al. PAPST2 plays critical roles in removing the stress signaling molecule 3’-phosphoadenosine 5’-phosphate from the cytosol and Its subsequent degradation in plastids and mitochondria. Plant Cell 2019; 31:231–249 [View Article] [PubMed]
    [Google Scholar]
  92. Palmieri F, Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: a review. Biochim Biophys Acta 2016; 1863:2362–2378 [View Article] [PubMed]
    [Google Scholar]
  93. Satre M, Mattei S, Aubry L, Gaudet P, Pelosi L et al. Mitochondrial carrier family: repertoire and peculiarities of the cellular slime mould Dictyostelium discoideum. Biochimie 2007; 89:1058–1069 [View Article] [PubMed]
    [Google Scholar]
  94. Zítek J, King MS, Peña-Diaz P, Pyrihová E, King AC et al. The free-living flagellate Paratrimastix pyriformis uses a distinct mitochondrial carrier to balance adenine nucleotide pools. Arch Biochem Biophys 2023; 742:109638 [View Article] [PubMed]
    [Google Scholar]
  95. Yamaoka S, Hara-Nishimura I. The mitochondrial Ras-related GTPase Miro: views from inside and outside the metazoan kingdom. Front Plant Sci 2014; 5:350 [View Article] [PubMed]
    [Google Scholar]
  96. Fransson S, Ruusala A, Aspenström P. The atypical Rho GTPases miro-1 and miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 2006; 344:500–510 [View Article] [PubMed]
    [Google Scholar]
  97. Vlahou G, Eliáš M, von Kleist-Retzow J-C, Wiesner RJ, Rivero F. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur J Cell Biol 2011; 90:342–355 [View Article] [PubMed]
    [Google Scholar]
  98. Ebenezer TE, Zoltner M, Burrell A, Nenarokova A, Novák Vanclová AMG et al. Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biol 2019; 17:11 [View Article] [PubMed]
    [Google Scholar]
  99. Záhonová K, Füssy Z, Birčák E, Novák Vanclová AMG, Klimeš V et al. Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep 2018; 8:17012 [View Article] [PubMed]
    [Google Scholar]
  100. Kaur B, Záhonová K, Valach M, Faktorová D, Prokopchuk G et al. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res 2020; 48:2694–2708 [View Article] [PubMed]
    [Google Scholar]
  101. Škodová-Sveráková I, Záhonová K, Juricová V, Danchenko M, Moos M et al. Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum. BMC Biol 2021; 19:251 [View Article] [PubMed]
    [Google Scholar]
  102. Dziurdzik SK, Conibear E. The Vps13 family of lipid transporters and its role at membrane contact sites. Int J Mol Sci 2021; 22:2905 [View Article] [PubMed]
    [Google Scholar]
  103. Guillén-Samander A, Leonzino M, Hanna MG, Tang N, Shen H et al. VPS13D bridges the ER to mitochondria and peroxisomes via miro. J Cell Biol 2021; 220:e20201000405052021c [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001143
Loading
/content/journal/mgen/10.1099/mgen.0.001143
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error