1887

Abstract

Non-human primates share recent common ancestry with humans and exhibit comparable disease symptoms. Here, we explored the transmission potential of enteric bacterial pathogens in monkeys exhibiting symptoms of recurrent diarrhoea in a biomedical research facility in China. The common zoonotic bacterium was isolated from macaques ( and ) and compared to isolates from humans and agricultural animals in Asia. Among the monkeys sampled, 5 % (44/973) tested positive for , 11 % (5/44) of which displayed diarrhoeal symptoms. Genomic analysis of monkey isolates, and 1254 genomes from various sources in Asia, were used to identify the most likely source of human infection. Monkey and human isolates shared high average nucleotide identity, common MLST clonal complexes and clustered together on a phylogeny. Furthermore, the profiles of putative antimicrobial resistance genes were similar between monkeys and humans. Taken together these findings suggest that housed macaques became infected with either directly from humans or via a common contamination source.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001121
2023-10-25
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/10/mgen001121.html?itemId=/content/journal/mgen/10.1099/mgen.0.001121&mimeType=html&fmt=ahah

References

  1. Sheppard SK, Dallas JF, Strachan NJC, MacRae M, McCarthy ND et al. Campylobacter genotyping to determine the source of human infection. Clin Infect Dis 2009; 48:1072–1078 [View Article] [PubMed]
    [Google Scholar]
  2. Sheppard SK, Dallas JF, MacRae M, McCarthy ND, Sproston EL et al. Campylobacter genotypes from food animals, environmental sources and clinical disease in Scotland 2005/6. Int J Food Microbiol 2009; 134:96–103 [View Article] [PubMed]
    [Google Scholar]
  3. Alirol E, Getaz L, Stoll B, Chappuis F, Loutan L. Urbanisation and infectious diseases in a globalised world. Lancet Infect Dis 2011; 11:131–141 [View Article] [PubMed]
    [Google Scholar]
  4. Mourkas E, Yahara K, Bayliss SC, Calland JK, Johansson H et al. Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. eLife 2022; 11:e73552 [View Article] [PubMed]
    [Google Scholar]
  5. Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI et al. Pathways to zoonotic spillover. Nat Rev Microbiol 2017; 15:502–510 [View Article] [PubMed]
    [Google Scholar]
  6. Lowder BV, Guinane CM, Ben Zakour NL, Weinert LA, Conway-Morris A et al. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc Natl Acad Sci U S A 2009; 106:19545–19550 [View Article] [PubMed]
    [Google Scholar]
  7. Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host adaptation. Nat Rev Genet 2018; 19:549–565 [View Article] [PubMed]
    [Google Scholar]
  8. Liu CM, Aziz M, Park DE, Wu Z, Stegger M et al. Using source-associated mobile genetic elements to identify zoonotic extraintestinal E. coli infections. One Health 2023; 16:100518 [View Article] [PubMed]
    [Google Scholar]
  9. Mageiros L, Méric G, Bayliss SC, Pensar J, Pascoe B et al. Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nat Commun 2021; 12:765 [View Article] [PubMed]
    [Google Scholar]
  10. Klemm EJ, Gkrania-Klotsas E, Hadfield J, Forbester JL, Harris SR et al. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host. Nat Microbiol 2016; 1:15023 [View Article] [PubMed]
    [Google Scholar]
  11. Weinert LA, Chaudhuri RR, Wang J, Peters SE, Corander J et al. Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nat Commun 2015; 6:6740 [View Article] [PubMed]
    [Google Scholar]
  12. Banaszkiewicz S, Calland JK, Mourkas E, Sheppard SK, Pascoe B et al. Genetic diversity of composite enterotoxigenic Staphylococcus epidermidis pathogenicity islands. Genome Biol Evol 2019; 11:3498–3509 [View Article] [PubMed]
    [Google Scholar]
  13. Yahara K, Méric G, Taylor AJ, de Vries SPW, Murray S et al. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ Microbiol 2017; 19:361–380 [View Article] [PubMed]
    [Google Scholar]
  14. Sheppard SK, Colles FM, McCarthy ND, Strachan NJC, Ogden ID et al. Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species. Mol Ecol 2011; 20:3484–3490 [View Article] [PubMed]
    [Google Scholar]
  15. Mourkas E, Taylor AJ, Méric G, Bayliss SC, Pascoe B et al. Agricultural intensification and the evolution of host specialism in the enteric pathogen Campylobacter jejuni. Proc Natl Acad Sci U S A 2020; 117:11018–11028 [View Article] [PubMed]
    [Google Scholar]
  16. Costa D, Iraola G. Pathogenomics of emerging Campylobacter species. Clin Microbiol Rev 2019; 32:e00072-18 [View Article]
    [Google Scholar]
  17. Parker CT, Cooper KK, Schiaffino F, Miller WG, Huynh S et al. Genomic characterization of Campylobacter jejuni adapted to the Guinea Pig (Cavia porcellus) host. Front Cell Infect Microbiol 2021; 11:607747 [View Article]
    [Google Scholar]
  18. Dearlove BL, Cody AJ, Pascoe B, Méric G, Wilson DJ et al. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME J 2016; 10:721–729 [View Article] [PubMed]
    [Google Scholar]
  19. Sheppard SK, Cheng L, Méric G, de Haan CPA, Llarena A-K et al. Cryptic ecology among host generalist Campylobacter jejuni in domestic animals. Mol Ecol 2014; 23:2442–2451 [View Article] [PubMed]
    [Google Scholar]
  20. Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA et al. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc Natl Acad Sci U S A 2013; 110:11923–11927 [View Article] [PubMed]
    [Google Scholar]
  21. Calland JK, Pascoe B, Bayliss SC, Mourkas E, Berthenet E et al. Quantifying bacterial evolution in the wild: a birthday problem for Campylobacter lineages. PLoS Genet 2021; 17:e1009829 [View Article] [PubMed]
    [Google Scholar]
  22. Jones MA, Marston KL, Woodall CA, Maskell DJ, Linton D et al. Adaptation of Campylobacter jejuni NCTC11168 to high-level colonization of the avian gastrointestinal tract. Infect Immun 2004; 72:3769–3776 [View Article] [PubMed]
    [Google Scholar]
  23. Djeghout B, Bloomfield SJ, Rudder S, Elumogo N, Mather AE et al. Comparative genomics of Campylobacter jejuni from clinical campylobacteriosis stool specimens. Gut Pathog 2022; 14:45 [View Article] [PubMed]
    [Google Scholar]
  24. Romanescu M, Oprean C, Lombrea A, Badescu B, Teodor A et al. Current state of knowledge regarding WHO high priority pathogens-resistance mechanisms and proposed solutions through candidates such as essential oils: a systematic review. Int J Mol Sci 2023; 24:9727 [View Article] [PubMed]
    [Google Scholar]
  25. Arning N, Sheppard SK, Bayliss S, Clifton DA, Wilson DJ. Machine learning to predict the source of campylobacteriosis using whole genome data. PLoS Genet 2021; 17:e1009436 [View Article] [PubMed]
    [Google Scholar]
  26. Mouftah SF, Pascoe B, Calland JK, Mourkas E, Tonkin N et al. Local accessory gene sharing among Egyptian Campylobacter potentially promotes the spread of antimicrobial resistance. Microb Genom 2022; 8:mgen000834 [View Article] [PubMed]
    [Google Scholar]
  27. Berthenet E, Thépault A, Chemaly M, Rivoal K, Ducournau A et al. Source attribution of Campylobacter jejuni shows variable importance of chicken and ruminants reservoirs in non-invasive and invasive French clinical isolates. Sci Rep 2019; 9:8098 [View Article] [PubMed]
    [Google Scholar]
  28. Thépault A, Rose V, Quesne S, Poezevara T, Béven V et al. Ruminant and chicken: important sources of campylobacteriosis in France despite a variation of source attribution in 2009 and 2015. Sci Rep 2018; 8:9305 [View Article] [PubMed]
    [Google Scholar]
  29. Marotta F, Di Marcantonio L, Janowicz A, Pedonese F, Di Donato G et al. Genotyping and antibiotic resistance traits in Campylobacter jejuni and coli from pigs and wild boars in Italy. Front Cell Infect Microbiol 2020; 10:592512 [View Article]
    [Google Scholar]
  30. Zang X, Huang P, Li J, Jiao X, Huang J. Genomic relatedness, antibiotic resistance and virulence traits of Campylobacter jejuni HS19 isolates from cattle in China indicate pathogenic potential. Front Microbiol 2021; 12:783750 [View Article] [PubMed]
    [Google Scholar]
  31. Poropatich KO, Walker CLF, Black RE. Quantifying the association between Campylobacter infection and Guillain-Barré syndrome: a systematic review. J Health Popul Nutr 2010; 28:545–552 [View Article] [PubMed]
    [Google Scholar]
  32. Peters S, Pascoe B, Wu Z, Bayliss SC, Zeng X et al. Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans. Commun Biol 2021; 4:1015 [View Article] [PubMed]
    [Google Scholar]
  33. Bojanić K, Acke E, Roe WD, Marshall JC, Cornelius AJ et al. Comparison of the pathogenic potential of Campylobacter jejuni, C. upsaliensis and C. helveticus and limitations of using larvae of Galleria mellonella as an infection model. Pathogens 2020; 9:713 [View Article]
    [Google Scholar]
  34. Brooks PT, Brakel KA, Bell JA, Bejcek CE, Gilpin T et al. Transplanted human fecal microbiota enhanced Guillain Barré syndrome autoantibody responses after Campylobacter jejuni infection in C57BL/6 mice. Microbiome 2017; 5:92 [View Article] [PubMed]
    [Google Scholar]
  35. Malik-Kale P, Raphael BH, Parker CT, Joens LA, Klena JD et al. Characterization of genetically matched isolates of Campylobacter jejuni reveals that mutations in genes involved in flagellar biosynthesis alter the organism’s virulence potential. Appl Environ Microbiol 2007; 73:3123–3136 [View Article] [PubMed]
    [Google Scholar]
  36. Hendrickson SM, Thomas A, Prongay K, Haertel AJ, Garzel LM et al. Reduced infant rhesus macaque growth rates due to environmental enteric dysfunction and association with histopathology in the large intestine. Nat Commun 2022; 13:234 [View Article] [PubMed]
    [Google Scholar]
  37. Hendrickson SM, Thomas A, Raué H-P, Prongay K, Haertel AJ et al. Campylobacter vaccination reduces diarrheal disease and infant growth stunting among rhesus macaques. Nat Commun 2023; 14:3806 [View Article] [PubMed]
    [Google Scholar]
  38. Sestak K, Merritt CK, Borda J, Saylor E, Schwamberger SR et al. Infectious agent and immune response characteristics of chronic enterocolitis in captive rhesus macaques. Infect Immun 2003; 71:4079–4086 [View Article] [PubMed]
    [Google Scholar]
  39. Black RE, Levine MM, Clements ML, Hughes TP, Blaser MJ. Experimental Campylobacter jejuni infection in humans. J Infect Dis 1988; 157:472–479 [View Article] [PubMed]
    [Google Scholar]
  40. Andrade MCR, Gabeira S de O, Abreu-Lopes D, Esteves WTC, Vilardo M de C et al. Circulation of Campylobacter spp. in rhesus monkeys (Macaca mulatta) held in captivity: a longitudinal study. Mem Inst Oswaldo Cruz 2007; 102:53–57 [View Article] [PubMed]
    [Google Scholar]
  41. Zang X, Tang H, Jiao X, Huang J. Can a visual loop-mediated isothermal amplification assay stand out in different detection methods when monitoring Campylobacter jejuni from diverse sources of samples?. Food Control 2017; 75:220–227 [View Article]
    [Google Scholar]
  42. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  43. Jolley KA, Maiden MCJ. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article] [PubMed]
    [Google Scholar]
  44. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  45. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  46. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014; 15:524 [View Article] [PubMed]
    [Google Scholar]
  47. Glaize A, Gutierrez-Rodriguez E, Hanning I, Díaz-Sánchez S, Gunter C et al. Transmission of antimicrobial resistant non-O157 Escherichia coli at the interface of animal-fresh produce in sustainable farming environments. Int J Food Microbiol 2020; 319:108472 [View Article] [PubMed]
    [Google Scholar]
  48. Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2016; 2:e000093 [View Article] [PubMed]
    [Google Scholar]
  49. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  50. Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: A fast and scalable pangenomics toolbox for clustering diverged orthologues in bacteria. Gigascience 2019; 8:giz119 [View Article] [PubMed]
    [Google Scholar]
  51. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  52. Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J et al. AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep 2021; 11:12728 [View Article] [PubMed]
    [Google Scholar]
  53. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  54. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O et al. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 2017; 72:2764–2768 [View Article] [PubMed]
    [Google Scholar]
  55. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:687–692 [View Article] [PubMed]
    [Google Scholar]
  56. Vallender EJ, Miller GM. Nonhuman primate models in the genomic era: a paradigm shift. ILAR J 2013; 54:154–165 [View Article] [PubMed]
    [Google Scholar]
  57. Islam Z, van Belkum A, Wagenaar JA, Cody AJ, de Boer AG et al. Comparative genotyping of Campylobacter jejuni strains from patients with Guillain-Barré syndrome in Bangladesh. PLoS One 2009; 4:e7257 [View Article] [PubMed]
    [Google Scholar]
  58. Nielsen LN, Sheppard SK, McCarthy ND, Maiden MCJ, Ingmer H et al. MLST clustering of Campylobacter jejuni isolates from patients with gastroenteritis, reactive arthritis and Guillain-Barré syndrome. J Appl Microbiol 2010; 108:591–599 [View Article] [PubMed]
    [Google Scholar]
  59. Soge OO, No D, Michael KE, Dankoff J, Lane J et al. Transmission of MDR MRSA between primates, their environment and personnel at a United States primate centre. J Antimicrob Chemother 2016; 71:2798–2803 [View Article] [PubMed]
    [Google Scholar]
  60. Westreich ST, Ardeshir A, Alkan Z, Kable ME, Korf I et al. Fecal metatranscriptomics of macaques with idiopathic chronic diarrhea reveals altered mucin degradation and fucose utilization. Microbiome 2019; 7:41 [View Article] [PubMed]
    [Google Scholar]
  61. Ardeshir A, Oslund KL, Ventimiglia F, Yee J, Lerche NW et al. Idiopathic microscopic colitis of rhesus macaques: quantitative assessment of colonic mucosa: microscopic colitis of rhesus macaques. Anat Rec 2013; 296:1169–1179 [View Article] [PubMed]
    [Google Scholar]
  62. Sheppard SK, Colles F, Richardson J, Cody AJ, Elson R et al. Host association of Campylobacter genotypes transcends geographic variation. Appl Environ Microbiol 2010; 76:5269–5277 [View Article] [PubMed]
    [Google Scholar]
  63. Pascoe B, Méric G, Yahara K, Wimalarathna H, Murray S et al. Local genes for local bacteria: evidence of allopatry in the genomes of transatlantic Campylobacter populations. Mol Ecol 2017; 26:4497–4508 [View Article] [PubMed]
    [Google Scholar]
  64. Thépault A, Méric G, Rivoal K, Pascoe B, Mageiros L et al. Genome-wide identification of host-segregating epidemiological markers for source attribution in Campylobacter jejuni. Appl Environ Microbiol 2017; 83:e03085-16 [View Article] [PubMed]
    [Google Scholar]
  65. Mourkas E, Valdebenito JO, Marsh H, Hitchings MD, Cooper KK et al. Urbanization spreads antimicrobial resistant enteric pathogens in wild bird microbiomes. bioRxiv 2023 [View Article]
    [Google Scholar]
  66. Colles FM, Ali JS, Sheppard SK, McCarthy ND, Maiden MCJ. Campylobacter populations in wild and domesticated Mallard ducks (Anas platyrhynchos). Environ Microbiol Rep 2011; 3:574–580 [View Article] [PubMed]
    [Google Scholar]
  67. Colles FM, McCarthy ND, Sheppard SK, Layton R, Maiden MCJ. Comparison of Campylobacter populations isolated from a free-range broiler flock before and after slaughter. Int J Food Microbiol 2010; 137:259–264 [View Article] [PubMed]
    [Google Scholar]
  68. Pascoe B, Schiaffino F, Murray S, Méric G, Bayliss SC et al. Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pediatric infection in the Peruvian Amazon. PLoS Negl Trop Dis 2020; 14:e0008533 [View Article] [PubMed]
    [Google Scholar]
  69. Nichols GL, Richardson JF, Sheppard SK, Lane C, Sarran C. Campylobacter epidemiology: a descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011. BMJ Open 2012; 2:e001179 [View Article] [PubMed]
    [Google Scholar]
  70. Zhang P, Zhang X, Liu Y, Jiang J, Shen Z et al. Multilocus sequence types and antimicrobial resistance of Campylobacter jejuni and C. coli isolates of human patients From Beijing, China, 2017-2018. Front Microbiol 2020; 11:554784 [View Article] [PubMed]
    [Google Scholar]
  71. Liao Y-S, Chen B-H, Teng R-H, Wang Y-W, Chang J-H et al. Antimicrobial resistance in Campylobacter coli and Campylobacter jejuni from human Campylobacteriosis in Taiwan, 2016 to 2019. Antimicrob Agents Chemother 2022; 66:e0173621 [View Article] [PubMed]
    [Google Scholar]
  72. Sproston EL, Wimalarathna HML, Sheppard SK. Trends in fluoroquinolone resistance in Campylobacter. Microb Genom 2018; 4:e000198 [View Article] [PubMed]
    [Google Scholar]
  73. Zhang L, Rohr J, Cui R, Xin Y, Han L et al. Biological invasions facilitate zoonotic disease emergences. Nat Commun 2022; 13:1762 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001121
Loading
/content/journal/mgen/10.1099/mgen.0.001121
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error