1887

Abstract

is one of the commonest causes of diarrhoea worldwide and a major public health problem. serotyping is based on a standardized scheme that splits strains into four serogroups and 60 serotypes on the basis of biochemical tests and O-antigen structures. This conventional serotyping method is laborious, time-consuming, impossible to automate, and requires a high level of expertise. Whole-genome sequencing (WGS) is becoming more affordable and is now used for routine surveillance, opening up possibilities for the development of much-needed accurate rapid typing methods. Here, we describe ShigaPass, a new tool for predicting serotypes from WGS assemblies on the basis of gene cluster DNA sequences, phage and plasmid-encoded O-antigen modification genes, seven housekeeping genes (EnteroBase’s MLST scheme), alleles and clustered regularly interspaced short palindromic repeats (CRISPR) spacers. Using 4879 genomes, including 4716 reference strains and clinical isolates of characterized with a panel of biochemical tests and serotyped by slide agglutination, we show here that ShigaPass outperforms all existing tools, particularly for the identification of and serotypes, with a correct serotype assignment rate of 98.5 % and a sensitivity rate (i.e. ability to make any prediction) of 100 %.

Funding
This study was supported by the:
  • Fulbright Association
    • Principle Award Recipient: ElisabethE Hansen
  • Fondation Le Roch-Les Mousquetaires
    • Principle Award Recipient: François-XavierWeill
  • Santé publique France
    • Principle Award Recipient: François-XavierWeill
  • Institut Pasteur
    • Principle Award Recipient: François-XavierWeill
  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000961
2023-03-23
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/3/mgen000961.html?itemId=/content/journal/mgen/10.1099/mgen.0.000961&mimeType=html&fmt=ahah

References

  1. Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990-2016. Lancet Infect Dis 2018; 18:1229–1240 [View Article] [PubMed]
    [Google Scholar]
  2. Connor TR, Barker CR, Baker KS, Weill F-X, Talukder KA et al. Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. Elife 2015; 4:e07335 [View Article]
    [Google Scholar]
  3. Baker KS, Dallman TJ, Ashton PM, Day M, Hughes G et al. Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study. Lancet Infect Dis 2015; 15:913–921 [View Article] [PubMed]
    [Google Scholar]
  4. Hawkey J, Paranagama K, Baker KS, Bengtsson RJ, Weill F-X et al. Global population structure and genotyping framework for genomic surveillance of the major dysentery pathogen, Shigella sonnei. Nat Commun 2021; 12:2684 [View Article]
    [Google Scholar]
  5. Baker KS, Dallman TJ, Behar A, Weill F-X, Gouali M et al. Travel- and community-based transmission of multidrug-resistant Shigella sonnei lineage among International Orthodox Jewish Communities. Emerg Infect Dis 2016; 22:1545–1553 [View Article]
    [Google Scholar]
  6. Ewing WH. Shigella nomenclature. J Bacteriol 1949; 57:633–638 [View Article]
    [Google Scholar]
  7. Yassine I, Lefèvre S, Hansen EE, Ruckly C, Carle I et al. Population structure analysis and laboratory monitoring of Shigella by core-genome multilocus sequence typing. Nat Commun 2022; 13:551 [View Article] [PubMed]
    [Google Scholar]
  8. Edwards PR, Ewing WH. Genus Shigella. In Identification of Enterobacteriaceae Burgess Publishing Company; 1972 pp 108–142
    [Google Scholar]
  9. Pupo GM, Lan R, Reeves PR. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci 2000; 97:10567–10572 [View Article]
    [Google Scholar]
  10. Pettengill EA, Pettengill JB, Binet R. Phylogenetic analyses of Shigella and enteroinvasive Escherichia coli for the identification of molecular epidemiological markers: whole-genome comparative analysis does not support distinct genera designation. Front Microbiol 2015; 6:1573 [View Article]
    [Google Scholar]
  11. Zhang X, Payne M, Nguyen T, Kaur S, Lan R. Cluster-specific gene markers enhance Shigella and enteroinvasive Escherichia coli in silico serotyping. Microb Genom 2021; 7: [View Article]
    [Google Scholar]
  12. Pasqua M, Michelacci V, Di Martino ML, Tozzoli R, Grossi M et al. The intriguing evolutionary journey of Enteroinvasive E. coli (EIEC) toward pathogenicity. Front Microbiol 2017; 8:2390 [View Article]
    [Google Scholar]
  13. Parsot C. Shigella spp. and enteroinvasive Escherichia coli pathogenicity factors. FEMS Microbiol Lett 2005; 252:11–18 [View Article] [PubMed]
    [Google Scholar]
  14. The HC, Thanh DP, Holt KE, Thomson NR, Baker S. The genomic signatures of Shigella evolution, adaptation and geographical spread. Nat Rev Microbiol 2016; 14:235–250 [View Article] [PubMed]
    [Google Scholar]
  15. Edwards PR, Ewing WH. Edwardsand Ewing’s identification of Enterobacteriaceae. In Bergey’s Manual of Systematic Bacteriology New York, N.Y: Elsevier Publishing Co; 1986
    [Google Scholar]
  16. Chattaway MA, Schaefer U, Tewolde R, Dallman TJ, Jenkins C. Identification of Escherichia coli and Shigella species from whole-genome sequences. J Clin Microbiol 2017; 55:616–623 [View Article]
    [Google Scholar]
  17. Lefebvre J, Gosselin F, Ismaïl J, Lorange M, Lior H et al. Evaluation of commercial antisera for Shigella serogrouping. J Clin Microbiol 1995; 33:1997–2001 [View Article] [PubMed]
    [Google Scholar]
  18. Coimbra RS, Lefevre M, Grimont F, Grimont PA. Clonal relationships among Shigella serotypes suggested by cryptic flagellin gene polymorphism. J Clin Microbiol 2001; 39:670–674 [View Article] [PubMed]
    [Google Scholar]
  19. Coimbra RS, Grimont F, Grimont PA. Identification of Shigella serotypes by restriction of amplified O-antigen gene cluster. Res Microbiol 1999; 150:543–553 [View Article] [PubMed]
    [Google Scholar]
  20. Brengi SP, Sun Q, Bolaños H, Duarte F, Jenkins C et al. PCR-based method for Shigella flexneri serotyping: international multicenter validation. J Clin Microbiol 2019; 57:e01592-18 [View Article]
    [Google Scholar]
  21. Sun Q, Lan R, Wang Y, Zhao A, Zhang S et al. Development of a multiplex PCR assay targeting O-antigen modification genes for molecular serotyping of Shigella flexneri. J Clin Microbiol 2011; 49:3766–3770 [View Article] [PubMed]
    [Google Scholar]
  22. Coimbra RS, Grimont F, Lenormand P, Burguière P, Beutin L et al. Identification of Escherichia coli O-serogroups by restriction of the amplified O-antigen gene cluster (rfb-RFLP). Res Microbiol 2000; 151:639–654 [View Article] [PubMed]
    [Google Scholar]
  23. Sun Q, Lan R, Wang J, Xia S, Wang Y et al. Identification and characterization of a novel Shigella flexneri serotype Yv in China. PLoS One 2013; 8:e70238 [View Article]
    [Google Scholar]
  24. Sun Q, Lan R, Wang Y, Wang J, Wang Y et al. Isolation and genomic characterization of SfI, a serotype-converting bacteriophage of Shigella flexneri. BMC Microbiol 2013; 13:39 [View Article]
    [Google Scholar]
  25. Allison GE, Verma NK. Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol 2000; 8:17–23 [View Article] [PubMed]
    [Google Scholar]
  26. Clark CA, Beltrame J, Manning PA. The oac gene encoding a lipopolysaccharide O-antigen acetylase maps adjacent to the integrase-encoding gene on the genome of Shigella flexneri bacteriophage Sf6. Gene 1991; 107:43–52 [View Article] [PubMed]
    [Google Scholar]
  27. Gentle A, Ashton PM, Dallman TJ, Jenkins C. Evaluation of molecular methods for serotyping Shigella flexneri. J Clin Microbiol 2016; 54:1456–1461 [View Article]
    [Google Scholar]
  28. Liu J, Pholwat S, Zhang J, Taniuchi M, Haque R et al. Evaluation of molecular serotyping assays for Shigella flexneri directly on stool samples. J Clin Microbiol 2021; 59:e02455-20 [View Article]
    [Google Scholar]
  29. Williamson D, Ingle D, Howden B. Extensively drug-resistant Shigellosis in Australia among Men Who Have Sex with Men. N Engl J Med 2019; 381:2477–2479 [View Article]
    [Google Scholar]
  30. Charles H, Prochazka M, Thorley K, Crewdson A, Greig DR et al. Outbreak of sexually transmitted, extensively drug-resistant Shigella sonnei in the UK, 2021-22: a descriptive epidemiological study. Lancet Infect Dis 2022; 22:1503–1510 [View Article]
    [Google Scholar]
  31. Wu Y, Lau HK, Lee T, Lau DK, Payne J. In silico serotyping based on whole-genome sequencing improves the accuracy of Shigella identification. Appl Environ Microbiol 2019; 85:e00165–19
    [Google Scholar]
  32. Wirth T, Falush D, Lan R, Colles F, Mensa P et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006; 60:1136–1151 [View Article] [PubMed]
    [Google Scholar]
  33. Zhou Z, Alikhan N-F, Mohamed K, Fan Y et al.Group the AS The enterobase user’s guide, with case studies on salmonella transmissions, yersinia pestis phylogeny, and escherichia core genomic diversity. Genome Res 2020; 30:138–152
    [Google Scholar]
  34. Lan R, Alles MC, Donohoe K, Martinez MB, Reeves PR. Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infect Immun 2004; 72:5080–5088 [View Article] [PubMed]
    [Google Scholar]
  35. Hazen TH, Leonard SR, Lampel KA, Lacher DW, Maurelli AT et al. Investigating the relatedness of Enteroinvasive Escherichia coli to other E. coli and Shigella isolates by using comparative genomics. Infect Immun 2016; 84:2362–2371 [View Article]
    [Google Scholar]
  36. Dhakal R, Wang Q, Howard P, Sintchenko V. Genome sequences of enteroinvasive Escherichia coli sequence type 6, 99, and 311 strains acquired in Asia Pacific. Microbiol Resour Announc 2019; 8:e00944-19 [View Article]
    [Google Scholar]
  37. Patel IR, Gangiredla J, Mammel MK, Lampel KA, Elkins CA et al. Draft genome sequences of the Escherichia coli Reference (ECOR) collection. Microbiol Resour Announc 2018; 7:e01133-18 [View Article]
    [Google Scholar]
  38. Langendorf C, Le Hello S, Moumouni A, Gouali M, Mamaty A-A et al. Enteric bacterial pathogens in children with diarrhea in Niger: diversity and antimicrobial resistance. PLoS One 2015; 10:e0120275 [View Article]
    [Google Scholar]
  39. Criscuolo A, Brisse S. AlienTrimmer: a tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads. Genomics 2013; 102:500–506 [View Article] [PubMed]
    [Google Scholar]
  40. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  41. Njamkepo E, Fawal N, Tran-Dien A, Hawkey J, Strockbine N et al. Global phylogeography and evolutionary history of Shigella dysenteriae type 1. Nat Microbiol 2016; 1:16027 [View Article] [PubMed]
    [Google Scholar]
  42. Holt KE, Baker S, Weill F-X, Holmes EC, Kitchen A et al. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet 2012; 44:1056–1059 [View Article] [PubMed]
    [Google Scholar]
  43. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  44. Machado J, Grimont F, Grimont PA. Identification of Escherichia coli flagellar types by restriction of the amplified fliC gene. Res Microbiol 2000; 151:535–546 [View Article] [PubMed]
    [Google Scholar]
  45. Touchon M, Rocha EPC. The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PLoS One 2010; 5:e11126 [View Article]
    [Google Scholar]
  46. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987; 169:5429–5433 [View Article] [PubMed]
    [Google Scholar]
  47. Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 2007; 1:77–83 [View Article] [PubMed]
    [Google Scholar]
  48. Hartman AB, Venkatesan M, Oaks EV, Buysse JM. Sequence and molecular characterization of a multicopy invasion plasmid antigen gene, ipaH, of Shigella flexneri. J Bacteriol 1990; 172:1905–1915 [View Article] [PubMed]
    [Google Scholar]
  49. Venkatesan MM, Buysse JM, Kopecko DJ. Use of Shigella flexneri ipaC and ipaH gene sequences for the general identification of Shigella spp. and enteroinvasive Escherichia coli. J Clin Microbiol 1989; 27:2687–2691 [View Article]
    [Google Scholar]
  50. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN et al. Structure and genetics of Shigella O antigens. FEMS Microbiol Rev 2008; 32:627–653 [View Article] [PubMed]
    [Google Scholar]
  51. Kim J, Lindsey RL, Garcia-Toledo L, Loparev VN, Rowe LA et al. High-quality whole-genome sequences for 59 historical Shigella strains generated with PacBio sequencing. Genome Announc 2018; 6:e00282-18 [View Article]
    [Google Scholar]
  52. Casalino M, Latella MC, Prosseda G, Colonna B. CadC is the preferential target of a convergent evolution driving enteroinvasive Escherichia coli toward a lysine decarboxylase-defective phenotype. Infect Immun 2003; 71:5472–5479 [View Article] [PubMed]
    [Google Scholar]
  53. Ventola E, Bogaerts B, De Keersmaecker SCJ, Vanneste K, Roosens NHC et al. Shifting national surveillance of Shigella infections toward geno-serotyping by the development of a tailored Luminex assay and NGS workflow. MicrobiologyOpen 2019; 8:e00807 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000961
Loading
/content/journal/mgen/10.1099/mgen.0.000961
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error