1887

Abstract

Typhi (. Typhi) and Paratyphi A (. Paratyphi A) are the causative agents of enteric fever, a systemic human disease with a burden of 300 000 cases per year in India. The majority of enteric fever cases are associated with . Typhi, resulting in a paucity of data regarding . Paratyphi A, specifically with respect to genomic surveillance and antimicrobial resistance (AMR). Here, we exploited whole-genome sequencing (WGS) to identify . Paratyphi A genotypes and AMR determinants associated with an outbreak of . Paratyphi A in Vadodara, India, from December 2018 to December 2019. In total 117 . Paratyphi A were isolated and genome sequenced, most were genotype 2.4.2 (72.6 % of all cases), which is the globally dominant genotype. The remainder were genotype 2.3 (25.6 %), while only two isolates belonged to genotype 2.4.1. A single base-pair mutation in , associated with reduced susceptibility to fluoroquinolones, was present in all of the outbreak isolates; with 74.35 % of isolates having a S83F substitution and the remainder having an S83Y substitution. Our surveillance study suggests that . Paratyphi A is an emergent pathogen in South Asia, which may become increasingly relevant with the introduction of Vi conjugate vaccines.

Keyword(s): Enteric fever , India , Outbreak , Paratyphoid and QRDR
Funding
This study was supported by the:
  • Wellcome (Award 215515/Z/19/Z)
    • Principle Award Recipient: StephenBaker
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000914
2023-01-06
2024-11-12
Loading full text...

Full text loading...

/deliver/fulltext/mgen/9/1/mgen000914.html?itemId=/content/journal/mgen/10.1099/mgen.0.000914&mimeType=html&fmt=ahah

References

  1. Fidler K, Dudley J, Cloke R, Nicholls M, Greig DR et al. Salmonella paratyphi B; public health and parental choice. Pediatr Infect Dis J 2021; 40:e374–e378 [View Article]
    [Google Scholar]
  2. Stanaway JD, Reiner RC, Blacker BF, Goldberg EM, Khalil IA. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis 2019; 19:369–381 [View Article] [PubMed]
    [Google Scholar]
  3. Antillón M, Warren JL, Crawford FW, Weinberger DM, Kürüm E et al. The burden of typhoid fever in low- and middle-income countries: a meta-regression approach. PLoS Negl Trop Dis 2017; 11:e0005376 [View Article]
    [Google Scholar]
  4. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 2015; 28:901–937 [View Article]
    [Google Scholar]
  5. Yousafzai MT, Karim S, Qureshi S, Kazi M, Memon H et al. Effectiveness of typhoid conjugate vaccine against culture-confirmed Salmonella enterica serotype Typhi in an extensively drug-resistant outbreak setting of Hyderabad, Pakistan: a cohort study. Lancet Glob Health 2021; 9:e1154–e1162 [View Article]
    [Google Scholar]
  6. Shakya M, Voysey M, Theiss-Nyland K, Colin-Jones R, Pant D et al. Efficacy of typhoid conjugate vaccine in Nepal: final results of a phase 3, randomised, controlled trial. Lancet Glob Health 2021; 9:e1561–e1568 [View Article]
    [Google Scholar]
  7. Martin LB, Simon R, MacLennan CA, Tennant SM, Sahastrabuddhe S et al. Status of paratyphoid fever vaccine research and development. Vaccine 2016; 34:2900–2902 [View Article] [PubMed]
    [Google Scholar]
  8. Zellweger RM, Basnyat B, Shrestha P, Prajapati KG, Dongol S et al. A 23-year retrospective investigation of Salmonella Typhi and Salmonella Paratyphi isolated in a tertiary Kathmandu hospital. PLoS Negl Trop Dis 2017; 11:e0006051 [View Article]
    [Google Scholar]
  9. Zhou Z, McCann A, Weill F-X, Blin C, Nair S et al. Transient Darwinian selection in Salmonella enterica serovar Paratyphi a during 450 years of global spread of enteric fever. Proc Natl Acad Sci 2014; 111:12199–12204 [View Article]
    [Google Scholar]
  10. Sahastrabuddhe S, Carbis R, Wierzba TF, Ochiai RL. Increasing rates of Salmonella Paratyphi A and the current status of its vaccine development. Expert Rev Vaccines 2013; 12:1021–1031 [View Article] [PubMed]
    [Google Scholar]
  11. Browne AJ, Kashef Hamadani BH, Kumaran EAP, Rao P, Longbottom J et al. Drug-resistant enteric fever worldwide, 1990 to 2018: a systematic review and meta-analysis. BMC Med 2020; 18:1–22 [View Article]
    [Google Scholar]
  12. Holt KE, Thomson NR, Wain J, Phan MD, Nair S et al. Multidrug-resistant Salmonella enterica serovar paratyphi A harbors IncHI1 plasmids similar to those found in serovar typhi. J Bacteriol 2007; 189:4257–4264 [View Article] [PubMed]
    [Google Scholar]
  13. Maskey AP, Basnyat B, Thwaites GE, Campbell JI, Farrar JJ et al. Emerging trends in enteric fever in Nepal: 9124 cases confirmed by blood culture 1993-2003. Trans R Soc Trop Med Hyg 2008; 102:91–95 [View Article] [PubMed]
    [Google Scholar]
  14. Nair S, Unnikrishnan M, Turner K, Parija SC, Churcher C et al. Molecular analysis of fluoroquinolone-resistant Salmonella Paratyphi a isolate, India. Emerg Infect Dis 2006; 12:489–491 [View Article]
    [Google Scholar]
  15. Shirakawa T, Acharya B, Kinoshita S, Kumagai S, Gotoh A et al. Decreased susceptibility to fluoroquinolones and gyrA gene mutation in the Salmonella enterica serovar Typhi and Paratyphi A isolated in Katmandu, Nepal, in 2003. Diagn Microbiol Infect Dis 2006; 54:299–303 [View Article]
    [Google Scholar]
  16. Khanum S. Noor-us-Saba Qayyum M, ul Islam B, Qazilbash AA. Emergence of multi-drug resistant strains of salmonella typhi and paratyphi A in the rawalpindi/islamabad. J Med Sci 2006; 6:68–73
    [Google Scholar]
  17. Woods CW, Murdoch DR, Zimmerman MD, Glover WA, Basnyat B et al. Emergence of Salmonella enterica serotype Paratyphi A as A major cause of enteric fever in Kathmandu, Nepal. Trans R Soc Trop Med Hyg 2006; 100:1063–1067 [View Article] [PubMed]
    [Google Scholar]
  18. Baker S, Karkey A, Parry C. Are we adequately prepared for the emergence of Salmonella enterica serovar Paratyphi A?. Lancet Glob Health 2014; 2:e195–6 [View Article]
    [Google Scholar]
  19. Tanmoy AM, Hooda Y, Sajib MSI, Silva K da, Iqbal J et al. Paratype: a genotyping framework and an open-source tool for Salmonella Paratyphi A. Epidemiology 2021 [View Article]
    [Google Scholar]
  20. Hudzicki J. Kirby-bauer disk diffusion susceptibility test protocol. Am Soc Microbiol 2009:1–14
    [Google Scholar]
  21. Chattaway MA, Gentle A, Nair S, Tingley L, Day M et al. Phylogenomics and antimicrobial resistance of Salmonella Typhi and Paratyphi A, B and C in England, 2016-2019. Microb Genom 2021; 7:633 [View Article]
    [Google Scholar]
  22. Rahman SIA, Nguyen TNT, Khanam F, Thomson NR, Dyson ZA et al. Genetic diversity of Salmonella Paratyphi A isolated from enteric fever patients in Bangladesh from 2008 to 2018. PLoS Negl Trop Dis 2021; 15:e0009748 [View Article]
    [Google Scholar]
  23. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015; 10:845–858 [View Article] [PubMed]
    [Google Scholar]
  24. Hooda Y, Sajib MSI, Rahman H, Luby SP, Bondy-Denomy J et al. Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLoS Negl Trop Dis 2019; 13:e0007868 [View Article]
    [Google Scholar]
  25. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  26. Steele AD, Carey ME, Kumar S, MacLennan CA, Ma L-F et al. Typhoid conjugate vaccines and enteric fever control: where to next?. Clin Infect Dis 2020; 71:S185–S190 [View Article]
    [Google Scholar]
  27. González-Guzmán J. An epidemiological model for direct and indirect transmission of typhoid fever. Math Biosci 1989; 96:33–46 [View Article] [PubMed]
    [Google Scholar]
  28. Tanmoy AM, Hooda Y, Sajib MSI, Silva K da, Iqbal J et al. Paratype: a genotyping framework and an open-source tool for Salmonella Paratyphi A. Epidemiology [View Article]
    [Google Scholar]
  29. Liang W, Zhao Y, Chen C, Cui X, Yu J et al. Pan-genomic analysis provides insights into the genomic variation and evolution of Salmonella Paratyphi A. PLoS One 2012; 7:e45346 [View Article] [PubMed]
    [Google Scholar]
  30. Saha S, Sajib MSI, Garrett D, Qamar FN. Antimicrobial resistance in typhoidal Salmonella: around the world in 3 days. Clin Infect Dis 2020; 71:S91–S95 [View Article]
    [Google Scholar]
  31. Hirose K, Hashimoto A, Tamura K, Kawamura Y, Ezaki T et al. DNA sequence analysis of DNA gyrase and DNA topoisomerase IV quinolone resistance-determining regions of Salmonella enterica serovar Typhi and serovar Paratyphi A. Antimicrob Agents Chemother 2002; 46:3249–3252 [View Article] [PubMed]
    [Google Scholar]
  32. Qian H, Cheng S, Liu G, Tan Z, Dong C et al. Discovery of seven novel mutations of gyrB, parC and parE in Salmonella Typhi and Paratyphi strains from Jiangsu province of China. Sci Rep 2020; 10:7359 [View Article]
    [Google Scholar]
  33. Carey ME, Jain R, Yousuf M, Maes M, Dyson ZA et al. Spontaneous emergence of azithromycin resistance in independent lineages of Salmonella Typhi in Northern India. Clin Infect Dis 2021; 72:e120–e127 [View Article]
    [Google Scholar]
/content/journal/mgen/10.1099/mgen.0.000914
Loading
/content/journal/mgen/10.1099/mgen.0.000914
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error