1887

Abstract

This paper reports on the genome analysis of strain F29 representing a new species of the genus . This strain, isolated from the Lucky Strike hydrothermal vent field on the Mid-Atlantic Ridge, is able to grow by disproportionation of S with CO as a carbon source. Strain F29 possesses a genome of 2,345,565 bp, with a G+C content of 58.09%, and at least one plasmid. The genome analysis revealed complete sets of genes for CO fixation via the Wood–Ljungdahl pathway, for sulphate-reduction and for hydrogen oxidation, suggesting the involvement of the strain into carbon, sulphur, and hydrogen cycles of deep-sea hydrothermal vents. Strain F29 genome encodes also several CRISPR sequences, suggesting that the strain may be subjected to viral attacks. Comparative genomics was carried out to decipher sulphur disproportionation pathways. Genomes of sulphur-disproportionating bacteria from marine hydrothermal vents were compared to the genomes of non-sulphur-disproportionating bacteria. This analysis revealed the ubiquitous presence in these genomes of a molybdopterin protein consisting of a large and a small subunit, and an associated chaperone. We hypothesize that these proteins may be involved in the process of elemental sulphur disproportionation.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000865
2022-09-22
2024-07-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/9/mgen000865.html?itemId=/content/journal/mgen/10.1099/mgen.0.000865&mimeType=html&fmt=ahah

References

  1. Finster K. Microbiological disproportionation of inorganic sulfur compounds. J Sulphur Chem 2008; 29:281–292 [View Article]
    [Google Scholar]
  2. Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. Environ Microbiol Rep 2017; 9:323–344 [View Article]
    [Google Scholar]
  3. Slobodkin AI, Slobodkina GB. Diversity of Sulfur-Disproportionating Microorganisms. Microbiology 2019; 88:509–522 [View Article]
    [Google Scholar]
  4. Wu B, Liu F, Fang W, Yang T, Chen G-H et al. Microbial sulfur metabolism and environmental implications. Sci Total Environ 2021; 778:146085 [View Article]
    [Google Scholar]
  5. Umezawa K, Kojima H, Kato Y, Fukui M. Disproportionation of inorganic sulfur compounds by a novel autotrophic bacterium belonging to Nitrospirota. Syst Appl Microbiol 2020; 43:126110 [View Article]
    [Google Scholar]
  6. Bak F, Cypionka H. A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature 1987; 326:891–892 [View Article]
    [Google Scholar]
  7. Bak F, Pfennig N. Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 1987; 147:184–189 [View Article]
    [Google Scholar]
  8. Bertran E. Cellular and Intracellular Insights Into Microbial Sulfate Reduction and Sulfur Disproportionation. Doctoral dissertation Harvard University, Graduate School of Arts & Sciences; 2019 http://nrs.harvard.edu/urn-3:HUL.InstRepos:42013126
    [Google Scholar]
  9. Yvenou S, Allioux M, Slobodkin A, Slobodkina G, Jebbar M et al. Genetic Potential of Dissulfurimicrobium hydrothermale, an obligate sulfur-disproportionating thermophilic microorganism. Microorganisms 2021; 10:60 [View Article]
    [Google Scholar]
  10. Slobodkin AI, Reysenbach A-L, Slobodkina GB, Baslerov RV, Kostrikina NA et al. Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2012; 62:2565–2571 [View Article]
    [Google Scholar]
  11. Frolova AA, Slobodkina GB, Baslerov RV, Novikov AA, Bonch-Osmolovskaya EA et al. Thermosulfurimonas marina sp. nov., an autotrophic sulfur-disproportionating and nitrate-reducing bacterium isolated from a Shallow-Sea Hydrothermal Vent. Microbiology 2018; 87:502–507 [View Article]
    [Google Scholar]
  12. Tarasov VG, Gebruk AV, Mironov AN, Moskalev LI. Deep-sea and shallow-water hydrothermal vent communities: tTwo different phenomena?. Chem Geol 2005; 224:5–39 [View Article]
    [Google Scholar]
  13. Price RE, Giovannelli D. A review of the geochemistry and microbiology of marine shallow-water hydrothermal vents. Reference Module in Earth Systems and Environmental Sciences 2017 [View Article]
    [Google Scholar]
  14. Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol 2019; 17:271–283 [View Article]
    [Google Scholar]
  15. Allioux M, Jebbar M, Slobodkina G, Slobodkin A, Moalic Y et al. Complete genome sequence of Thermosulfurimonas marina SU872T, an anaerobic Thermophilic chemolithoautotrophic bacterium isolated from a shallow marine hydrothermal vent. Mar Genomics 2021; 55:100800 [View Article]
    [Google Scholar]
  16. Mardanov AV, Beletsky AV, Kadnikov VV, Slobodkin AI, Ravin NV. Genome analysis of Thermosulfurimonas dismutans, the first Thermophilic sulfur-disproportionating bacterium of the phylum Thermodesulfobacteria. Front Microbiol 2016; 7:950 [View Article]
    [Google Scholar]
  17. Slobodkina GB, Mardanov AV, Ravin NV, Frolova AA, Chernyh NA et al. Respiratory ammonification of nitrate coupled to anaerobic oxidation of elemental sulfur in deep-Sea Autotrophic Thermophilic Bacteria. Front Microbiol 2017; 8:87 [View Article]
    [Google Scholar]
  18. Sarradin PM, Legrand J. MOMARSAT2019 cruise, Pourquoi pas? R/V 2019. https://doi.org/10.17600/18001110
  19. Chavagnac V, Leleu T, Fontaine F, Cannat M, Ceuleneer G et al. Spatial vVariations in vVent cChemistry at the lLucky sStrike hHydrothermal fField, mMid‐aAtlantic rRidge (37°N): uUpdates for sSubseafloor fFlow gGeometry fFrom the nNewly dDiscovered cCapelinhos vVent. Geochem Geophys Geosyst 2018; 19:4444–4458 [View Article]
    [Google Scholar]
  20. Francois D. Dynamique spatiale et temporelle des communautés microbiennes dans les édifices hydrothermaux actifs / Spatial and temporal dynamics of microbial communities in active hydrothermal vents. Doctoral dissertation Université de Bretagne Occidentale; 2021 https://archimer.ifremer.fr/doc/00690/80209/
    [Google Scholar]
  21. Slobodkin AI, Tourova TP, Kuznetsov BB, Kostrikina NA, Chernyh NA et al. Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 1999; 49 Pt 4:1471–1478 [View Article]
    [Google Scholar]
  22. Webster G, Rinna J, Roussel EG, Fry JC, Weightman AJ et al. Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol Ecol 2010; 72:179–197 [View Article]
    [Google Scholar]
  23. Cord-Ruwisch R. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 1985; 4:33–36 [View Article]
    [Google Scholar]
  24. Thamdrup B, Finster K, Hansen JW, Bak F. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 1993; 59:101–108 [View Article]
    [Google Scholar]
  25. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  26. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article]
    [Google Scholar]
  27. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article]
    [Google Scholar]
  28. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article]
    [Google Scholar]
  29. Antipov D, Raiko M, Lapidus A, Pevzner PA. Plasmid detection and assembly in genomic and metagenomic data sets. Genome Res 2019; 29:961–968 [View Article]
    [Google Scholar]
  30. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article]
    [Google Scholar]
  31. Bushnell B, Rood J, Singer E. BBMerge - Accurate paired shotgun read merging via overlap. PLoS One 2017; 12:e0185056 [View Article]
    [Google Scholar]
  32. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018; 46:W246–W251 [View Article]
    [Google Scholar]
  33. Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45:W30–W35 [View Article]
    [Google Scholar]
  34. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article]
    [Google Scholar]
  35. Edgar RC. MUSCLE v5 enables improved estimates of phylogenetic tree confidence by ensemble bootstrapping. Bioinformatics 2021 [View Article]
    [Google Scholar]
  36. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article]
    [Google Scholar]
  37. Lefort V, Longueville J-E, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol 2017; 34:2422–2424 [View Article]
    [Google Scholar]
  38. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  40. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  41. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  42. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  43. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152
    [Google Scholar]
  44. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article]
    [Google Scholar]
  45. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial ystematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  46. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  47. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for Bacteria and Archaea Based on a standard genome relatedness index. mBio 2020; 11:e02475-19 [View Article]
    [Google Scholar]
  48. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article]
    [Google Scholar]
  49. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  50. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article]
    [Google Scholar]
  51. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article]
    [Google Scholar]
  52. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article]
    [Google Scholar]
  53. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  54. Vallenet D, Calteau A, Cruveiller S, Gachet M, Lajus A et al. MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes. Nucleic Acids Res 2017; 45:D517–D528 [View Article]
    [Google Scholar]
  55. Søndergaard D, Pedersen CNS, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 2016; 6:34212 [View Article] [PubMed]
    [Google Scholar]
  56. Neukirchen S, Sousa FL. DiSCo: a sequence-based type-specific predictor of Dsr-dependent dissimilatory sulphur metabolism in microbial data. Microb Genom 2021; 7:000603 [View Article]
    [Google Scholar]
  57. Slobodkina GB, Kolganova TV, Kopitsyn DS, Viryasov MB, Bonch-Osmolovskaya EA et al. Dissulfurirhabdus thermomarina gen. nov., sp. nov., a thermophilic, autotrophic, sulfite-reducing and disproportionating deltaproteobacterium isolated from a shallow-sea hydrothermal vent. Int J Syst Evol Microbiol 2016; 66:2515–2519 [View Article]
    [Google Scholar]
  58. Savojardo C, Martelli PL, Fariselli P, Profiti G, Casadio R. BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Res 2018; 46:W459–W466 [View Article]
    [Google Scholar]
  59. Veltri D, Wight MM, Crouch JA. SimpleSynteny: a web-based tool for visualization of microsynteny across multiple species. Nucleic Acids Res 2016; 44:W41–5 [View Article] [PubMed]
    [Google Scholar]
  60. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article]
    [Google Scholar]
  61. Castelán-Sánchez HG, Lopéz-Rosas I, García-Suastegui WA, Peralta R, Dobson ADW et al. Extremophile deep-sea viral communities from hydrothermal vents: sStructural and functional analysis. Mar Genomics 2019; 46:16–28 [View Article]
    [Google Scholar]
  62. Hanson TE, Campbell BJ, Kalis KM, Campbell MA, Klotz MG. Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate. Front Microbiol 2013; 4:180 [View Article]
    [Google Scholar]
  63. Allioux M, Yvenou S, Slobodkina G, Slobodkin A, Shao Z et al. Genomic characterization and environmental distribution of a Thermophilic anaerobe Dissulfurirhabdus thermomarina SH388T involved in disproportionation of sulfur compounds in shallow Sea Hydrothermal Vents. Microorganisms 2020; 8:1132 [View Article]
    [Google Scholar]
  64. Slobodkina G, Allioux M, Merkel A, Alain K, Jebbar M et al. Genome analysis of Thermosulfuriphilus ammonigenes ST65T, an anaerobic thermophilic chemolithoautotrophic bacterium isolated from a deep-sea hydrothermal vent. Mar Genomics 2020; 54:100786 [View Article]
    [Google Scholar]
  65. Thorup C, Schramm A, Findlay AJ, Finster KW, Schreiber L. Disguised as a sulfate reducer: growth of the deltaproteobacterium Desulfurivibrio alkaliphilus by sulfide oxidation with itrate. mBio 2017; 8:e00671-17 [View Article]
    [Google Scholar]
  66. François DX, Godfroy A, Mathien C, Aubé J, Cathalot C et al. Persephonella atlantica sp. nov.: ow to adapt to physico-chemical gradients in high temperature hydrothermal habitats. Syst Appl Microbiol 2021; 44:1261–176 [View Article]
    [Google Scholar]
  67. Peters JW, Miller A-F, Jones AK, King PW, Adams MW. Electron bifurcation. Curr Opin Chem Biol 2016; 31:146–152 [View Article]
    [Google Scholar]
  68. Baffert C, Kpebe A, Avilan L, Brugna M. n.d. Hydrogenases and H2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus. Adv Microb Physiol 2019:143–189
    [Google Scholar]
  69. Furlan C, Chongdar N, Gupta P, Lubitz W, Ogata H et al. Structural insight on the mechanism of an electron-bifurcating [FeFe] hydrogenase. Chemistry 2021 [View Article]
    [Google Scholar]
  70. Anantharaman V, Aravind L. MOSC domains: ancient, predicted sulfur-carrier domains, present in diverse metal-sulfur cluster biosynthesis proteins including Molybdenum cofactor sulfurases. FEMS Microbiol Lett 2002; 207:55–61 [View Article]
    [Google Scholar]
  71. Ilbert M, Méjean V, Giudici-Orticoni M-T, Samama J-P, Iobbi-Nivol C. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J Biol Chem 2003; 278:28787–28792 [View Article]
    [Google Scholar]
  72. Finster KW, Kjeldsen KU, Kube M, Reinhardt R, Mussmann M et al. Complete genome sequence of Desulfocapsa sulfexigens, a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds. Stand Genomic Sci 2013; 8:58–68 [View Article]
    [Google Scholar]
  73. Kojima H, Umezawa K, Fukui M. Caldimicrobium thiodismutans sp. nov., a sulfur-disproportionating bacterium isolated from a hot spring, and emended description of the genus Caldimicrobium. Int J Syst Evol Microbiol 2016; 66:1828–1831 [View Article]
    [Google Scholar]
  74. Umezawa K, Kojima H, Kato Y, Fukui M. Dissulfurispira thermophila gen. nov., sp. nov., a thermophilic chemolithoautotroph growing by sulfur disproportionation, and proposal of novel taxa in the phylum Nitrospirota to reclassify the genus Thermodesulfovibrio. Syst Appl Microbiol 2021; 44:126184 [View Article]
    [Google Scholar]
  75. Florentino AP, Pereira IAC, Boeren S, van den Born M, Stams AJM et al. Insight into the sulfur metabolism of Desulfurella amilsii by differential proteomics. Environ Microbiol 2019; 21:209–225 [View Article]
    [Google Scholar]
  76. Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972–6016 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000865
Loading
/content/journal/mgen/10.1099/mgen.0.000865
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error