1887

Abstract

Fish mortality caused by is a major economic problem in aquaculture in warm and temperate regions globally. There is also risk of zoonotic infection by through handling of contaminated fish. In this study, we present the complete genome sequence of strain QMA0248, isolated from farmed barramundi in South Australia. The 2.12 Mb genome of QMA0248 carries a 32 kb prophage, a 12 kb genomic island and 92 discrete insertion sequence (IS) elements. These include nine novel IS types that belong mostly to the IS family. Comparative and phylogenetic analysis between QMA0248 and publicly available complete genomes revealed discrepancies that are probably due to misassembly in the genomes of isolates ISET0901 and ISNO. Long-range PCR confirmed five rRNA loci in the PacBio assembly of QMA0248, and, unlike 89353, no tandemly repeated rRNA loci in the consensus genome. However, we found sequence read evidence that the tandem rRNA repeat existed within a subpopulation of the original QMA0248 culture. Subsequent nanopore sequencing revealed that the tandem rRNA repeat was the most prevalent genotype, suggesting that there is selective pressure to maintain fewer rRNA copies under uncertain laboratory conditions. Our study not only highlights assembly problems in existing genomes, but provides a high-quality reference genome for QMA0248, including manually curated mobile genetic elements, that will assist future comparative genomic and evolutionary studies.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000777
2022-03-01
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/mgen/8/3/mgen000777.html?itemId=/content/journal/mgen/10.1099/mgen.0.000777&mimeType=html&fmt=ahah

References

  1. Agnew W, Barnes AC. Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet Microbiol 2007; 122:1–15 [View Article] [PubMed]
    [Google Scholar]
  2. Shoemaker CA, Klesius PH, Evans JJ. Prevalence of Streptococcus iniae in tilapia, hybrid striped bass, and channel catfish on commercial fish farms in the United States. Am J Vet Res 2001; 62:174–177 [View Article] [PubMed]
    [Google Scholar]
  3. Lau SKP, Woo PCY, Luk W-K, Fung AMY, Hui W-T et al. Clinical isolates of Streptococcus iniae from Asia are more mucoid and beta-hemolytic than those from North America. Diagn Microbiol Infect Dis 2006; 54:177–181 [View Article] [PubMed]
    [Google Scholar]
  4. Baiano JCF, Barnes AC. Towards control of Streptococcus iniae. Emerg Infect Dis 2009; 15:1891–1896 [View Article] [PubMed]
    [Google Scholar]
  5. Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 2005; 3:722–732 [View Article] [PubMed]
    [Google Scholar]
  6. van Elsas JD, Bailey MJ. The ecology of transfer of mobile genetic elements. FEMS Microbiol Ecol 2002; 42:187–197 [View Article] [PubMed]
    [Google Scholar]
  7. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405:299–304 [View Article] [PubMed]
    [Google Scholar]
  8. Partridge SR. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol Rev 2011; 35:820–855 [View Article] [PubMed]
    [Google Scholar]
  9. Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 2014; 38:865–891 [View Article] [PubMed]
    [Google Scholar]
  10. Cheng S, Hu Y, Jiao X, Sun L. Identification and immunoprotective analysis of a Streptococcus iniae subunit vaccine candidate. Vaccine 2010; 28:2636–2641 [View Article] [PubMed]
    [Google Scholar]
  11. Rajoo S, Jeon W, Park K, Yoo S, Yoon I et al. Complete genome sequence of Streptococcus iniae YSFST01-82, isolated from olive flounder in Jeju, South Korea. Genome Announc 2015; 3:e00319-15 [View Article] [PubMed]
    [Google Scholar]
  12. Pridgeon JW, Zhang D, Zhang L. Complete genome sequence of a virulent strain, Streptococcus iniae ISET0901, isolated from diseased tilapia. Genome Announc 2014; 2:e00553-14 [View Article] [PubMed]
    [Google Scholar]
  13. Pridgeon JW, Zhang D, Zhang L. Complete genome sequence of the attenuated novobiocin-resistant Streptococcus iniae vaccine strain ISNO. Genome Announc 2014; 2:e00510-14 [View Article] [PubMed]
    [Google Scholar]
  14. Millard CM, Baiano JCF, Chan C, Yuen B, Aviles F et al. Evolution of the capsular operon of Streptococcus iniae in response to vaccination. Appl Environ Microbiol 2012; 78:8219–8226 [View Article] [PubMed]
    [Google Scholar]
  15. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  16. Sullivan MJ, Zakour NLB, Forde BM, Stanton-Cook M, Beatson SA. Contiguity: contig adjacency graph construction and visualisation. PeerJ PrePrints 2015. Report No.: 2167-9843
    [Google Scholar]
  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  18. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944–945 [View Article] [PubMed]
    [Google Scholar]
  19. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2010; 38:D234–6 [View Article] [PubMed]
    [Google Scholar]
  20. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001; Chapter 2:Unit [View Article] [PubMed]
    [Google Scholar]
  21. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  22. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  23. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  24. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015; 16:294 [View Article] [PubMed]
    [Google Scholar]
  25. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  26. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC et al. Primer3--new capabilities and interfaces. Nucleic Acids Res 2012; 40:e115 [View Article] [PubMed]
    [Google Scholar]
  27. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  28. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD et al. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 2010; 7:455–457 [View Article] [PubMed]
    [Google Scholar]
  29. Bateman A, Coin L, Durbin R, Finn RD, Hollich V et al. The Pfam protein families database. Nucleic Acids Res 2004; 32:D138–41 [View Article] [PubMed]
    [Google Scholar]
  30. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007; 35:W52–7 [View Article] [PubMed]
    [Google Scholar]
  31. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res 2011; 39:W347–52 [View Article] [PubMed]
    [Google Scholar]
  32. Dhillon BK, Laird MR, Shay JA, Winsor GL, Lo R et al. IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis. Nucleic Acids Res 2015; 43:W104–8 [View Article] [PubMed]
    [Google Scholar]
  33. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article] [PubMed]
    [Google Scholar]
  34. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG et al. ACT: the Artemis Comparison Tool. Bioinformatics 2005; 21:3422–3423 [View Article] [PubMed]
    [Google Scholar]
  35. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  36. Baiano JCF, Tumbol RA, Umapathy A, Barnes AC. Identification and molecular characterisation of a fibrinogen binding protein from Streptococcus iniae. BMC Microbiol 2008; 8:67 [View Article] [PubMed]
    [Google Scholar]
  37. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  38. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004; 14:1394–1403 [View Article] [PubMed]
    [Google Scholar]
  39. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014; 15:524 [View Article] [PubMed]
    [Google Scholar]
  40. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10:R25 [View Article] [PubMed]
    [Google Scholar]
  41. Li H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv preprint arXiv:13033997 2013
    [Google Scholar]
  42. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  43. Glaser P, Rusniok C, Buchrieser C, Chevalier F, Frangeul L et al. Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol 2002; 45:1499–1513 [View Article] [PubMed]
    [Google Scholar]
  44. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 2001; 293:498–506 [View Article] [PubMed]
    [Google Scholar]
  45. Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G et al. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A 2001; 98:4658–4663 [View Article] [PubMed]
    [Google Scholar]
  46. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315:1709–1712 [View Article] [PubMed]
    [Google Scholar]
  47. Gong H-Y, Wu S-H, Chen C-Y, Huang C-W, Lu J-K et al. Complete genome sequence of Streptococcus iniae 89353, a virulent strain isolated from diseased tilapia in Taiwan. Genome Announc 2017; 5:e01524-16 [View Article] [PubMed]
    [Google Scholar]
  48. Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 2004; 186:2629–2635 [View Article] [PubMed]
    [Google Scholar]
  49. Lim K, Furuta Y, Kobayashi I. Large variations in bacterial ribosomal RNA genes. Mol Biol Evol 2012; 29:2937–2948 [View Article] [PubMed]
    [Google Scholar]
  50. Anderson P, Roth J. Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons. Proc Natl Acad Sci U S A 1981; 78:3113–3117 [View Article] [PubMed]
    [Google Scholar]
  51. Reams AB, Kofoid E, Duleba N, Roth JR. Recombination and annealing pathways compete for substrates in making rrn duplications in Salmonella enterica. Genetics 2014; 196:119–135 [View Article] [PubMed]
    [Google Scholar]
  52. Sandegren L, Andersson DI. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 2009; 7:578–588 [View Article] [PubMed]
    [Google Scholar]
  53. Belikova D, Jochim A, Power J, Holden MTG, Heilbronner S. “Gene accordions” cause genotypic and phenotypic heterogeneity in clonal populations of Staphylococcus aureus. Nat Commun 2020; 11:3526 [View Article] [PubMed]
    [Google Scholar]
  54. Klappenbach JA, Dunbar JM, Schmidt TM. rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 2000; 66:1328–1333 [View Article] [PubMed]
    [Google Scholar]
  55. Fischetti VA, Pancholi V, Schneewind O. Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol 1990; 4:1603–1605 [View Article] [PubMed]
    [Google Scholar]
  56. Switalski LM, Patti JM, Butcher W, Gristina AG, Speziale P et al. A collagen receptor on Staphylococcus aureus strains isolated from patients with septic arthritis mediates adhesion to cartilage. Mol Microbiol 1993; 7:99–107 [View Article] [PubMed]
    [Google Scholar]
  57. van der Ploeg JR. Genome sequence of the temperate bacteriophage PH10 from Streptococcus oralis. Virus Genes 2010; 41:450–458 [View Article] [PubMed]
    [Google Scholar]
  58. Aziz RK, Breitbart M, Edwards RA. Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res 2010; 38:4207–4217 [View Article] [PubMed]
    [Google Scholar]
  59. Ochman H, Davalos LM. The nature and dynamics of bacterial genomes. Science 2006; 311:1730–1733 [View Article] [PubMed]
    [Google Scholar]
  60. Denapaite D, Brückner R, Nuhn M, Reichmann P, Henrich B et al. The genome of Streptococcus mitis B6-what is a commensal?. PLoS One 2010; 5:e9426 [View Article] [PubMed]
    [Google Scholar]
  61. Eraclio G, Ricci G, Fortina MG. Insertion sequence elements in Lactococcus garvieae. Gene 2015; 555:291–296 [View Article] [PubMed]
    [Google Scholar]
  62. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2010; 38:D234–6 [View Article] [PubMed]
    [Google Scholar]
  63. Løbner-Olesen A, Skovgaard O, Marinus MG. Dam methylation: coordinating cellular processes. Curr Opin Microbiol 2005; 8:154–160 [View Article] [PubMed]
    [Google Scholar]
  64. Moran NA, Plague GR. Genomic changes following host restriction in bacteria. Curr Opin Genet Dev 2004; 14:627–633 [View Article] [PubMed]
    [Google Scholar]
  65. Richards VP, Lang P, Bitar PDP, Lefébure T, Schukken YH et al. Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae. Infect Genet Evol 2011; 11:1263–1275 [View Article] [PubMed]
    [Google Scholar]
  66. Nijkamp J, Winterbach W, van den Broek M, Daran J-M, Reinders M et al. Integrating genome assemblies with MAIA. Bioinformatics 2010; 26:i433–9 [View Article] [PubMed]
    [Google Scholar]
  67. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article] [PubMed]
    [Google Scholar]
  68. Forde BM, Ben Zakour NL, Stanton-Cook M, Phan M-D, Totsika M et al. The complete genome sequence of Escherichia coli EC958: a high quality reference sequence for the globally disseminated multidrug resistant E. coli O25b:H4-ST131 clone. PLoS One 2014; 9:e104400 [View Article] [PubMed]
    [Google Scholar]
  69. Draper JL, Hansen LM, Bernick DL, Abedrabbo S, Underwood JG et al. Fallacy of the unique genome: sequence diversity within single Helicobacter pylori strains. mBio 2017; 8:e02321-16 [View Article] [PubMed]
    [Google Scholar]
  70. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009; 25:119–120 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000777
Loading
/content/journal/mgen/10.1099/mgen.0.000777
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error