1887

Abstract

and enteroinvasive (EIEC) cause human bacillary dysentery with similar invasion mechanisms and share similar physiological, biochemical and genetic characteristics. Differentiation of from EIEC is important for clinical diagnostic and epidemiological investigations. However, phylogenetically, and EIEC strains are composed of multiple clusters and are different forms of , making it difficult to find genetic markers to discriminate between and EIEC. In this study, we identified 10 clusters, seven EIEC clusters and 53 sporadic types of EIEC by examining over 17000 publicly available and EIEC genomes. We compared and EIEC accessory genomes to identify cluster-specific gene markers for the 17 clusters and 53 sporadic types. The cluster-specific gene markers showed 99.64% accuracy and more than 97.02% specificity. In addition, we developed a freely available serotyping pipeline named EIEC Cluster Enhanced Serotype Finder (ShigEiFinder) by incorporating the cluster-specific gene markers and established and EIEC serotype-specific O antigen genes and modification genes into typing. ShigEiFinder can process either paired-end Illumina sequencing reads or assembled genomes and almost perfectly differentiated from EIEC with 99.70 and 99.74% cluster assignment accuracy for the assembled genomes and read mapping respectively. ShigEiFinder was able to serotype over 59 serotypes and 22 EIEC serotypes and provided a high specificity of 99.40% for assembled genomes and 99.38% for read mapping for serotyping. The cluster-specific gene markers and our new serotyping tool, ShigEiFinder (installable package: https://github.com/LanLab/ShigEiFinder, online tool: https://mgtdb.unsw.edu.au/ShigEiFinder/), will be useful for epidemiological and diagnostic investigations.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000704
2021-12-10
2022-01-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/12/mgen000704.html?itemId=/content/journal/mgen/10.1099/mgen.0.000704&mimeType=html&fmt=ahah

References

  1. DuPont HL, Levine MM, Hornick RB, Formal SB. oculum size in shigellosis and implications for expected mode of transmission. J Infect Dis 1989; 159:1126–1128 [View Article] [PubMed]
    [Google Scholar]
  2. GBD Diarrhoeal Diseases Collaborators Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect Dis 2017; 17:909–948S1473-3099(17)30276-1 [View Article] [PubMed]
    [Google Scholar]
  3. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA et al. Correction: World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med 2015; 12:e1001940 [View Article] [PubMed]
    [Google Scholar]
  4. World HO. Guidelines for the Control of Shigellosis, Including Epidemics Due to Shigella dysenteriae Type 1 World Health Organization; 2005
    [Google Scholar]
  5. Brengi SP, Sun Q, Bolaños H, Duarte F, Jenkins C et al. PCR-based method for Shigella flexneri serotyping: international multicenter validation. J Clin Microbiol 2019; 57:e01592-18 [View Article] [PubMed]
    [Google Scholar]
  6. Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A et al. Morbidity and mortality due to Shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990-2016. Lancet Infect Dis 2018; 18:1229–1240S1473-3099(18)30475-4 [View Article] [PubMed]
    [Google Scholar]
  7. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 2013; 382:209–222S0140-6736(13)60844-2 [View Article] [PubMed]
    [Google Scholar]
  8. van den Beld MJC, Warmelink E, Friedrich AW, Reubsaet FAG, Schipper M et al. Incidence, clinical implications and impact on public health of infections with Shigella spp. and entero-invasive Escherichia coli (EIEC): results of a multicenter cross-sectional study in the Netherlands during 2016-2017. BMC Infect Dis 2019; 19:1037 [View Article] [PubMed]
    [Google Scholar]
  9. Edwards PR, Ewing WH. Identification of Enterobacteriaceae. Identification of Enterobacteriaceae, 3rd ed. 1972
    [Google Scholar]
  10. The HC Thanh DP, Holt KE, Thomson NR, Baker S. The genomic signatures of Shigella evolution, adaptation and geographical spread. Nat Rev Microbiol 2016; 14:235–250 [View Article] [PubMed]
    [Google Scholar]
  11. Wu Y, Lau HK, Lee T, Lau DK, Payne J et al. In silico serotyping based on whole-genome sequencing improves the accuracy of Shigella identification. Appl Environ Microbiol 2019; 85: [View Article]
    [Google Scholar]
  12. Livio S, Strockbine NA, Panchalingam S, Tennant SM, Barry EM et al. Shigella isolates from the global enteric multicenter study inform vaccine development. Clin Infect Dis 2014; 59:933–941 [View Article] [PubMed]
    [Google Scholar]
  13. Group OW. Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: Annual report of the OzFoodNet network, 2011. Commun Dis Intell Q Rep 2015; 39:E236
    [Google Scholar]
  14. Connor TR, Barker CR, Baker KS, Weill F-X, Talukder KA et al. Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. Elife 2015; 4:e07335 [View Article] [PubMed]
    [Google Scholar]
  15. Gomes TAT, Elias WP, Scaletsky ICA, Guth BEC, Rodrigues JF et al. Diarrheagenic Escherichia coli. Braz J Microbiol 2016; 47 Suppl 1:3–30S1517-8382(16)31091-7 [View Article] [PubMed]
    [Google Scholar]
  16. Levine MM. Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J Infect Dis 1987; 155:377–389 [View Article] [PubMed]
    [Google Scholar]
  17. Tai AYC, Easton M, Encena J, Rotty J, Valcanis M et al. A review of the public health management of shigellosis in Australia in the era of culture-independent diagnostic testing. Aust N Z J Public Health 2016; 40:588–591 [View Article] [PubMed]
    [Google Scholar]
  18. Taylor DN, Echeverria P, Sethabutr O, Pitarangsi C, Leksomboon U et al. Clinical and microbiologic features of Shigella and enteroinvasive Escherichia coli infections detected by DNA hybridization. J Clin Microbiol 1988; 26:1362–1366 [View Article] [PubMed]
    [Google Scholar]
  19. Pasqua M, Michelacci V, Di Martino ML, Tozzoli R, Grossi M et al. The Intriguing Evolutionary Journey of Enteroinvasive E. coli (EIEC) toward Pathogenicity. Front Microbiol 2017; 8:2390 [View Article] [PubMed]
    [Google Scholar]
  20. Herzig CTA, Fleischauer AT, Lackey B, Lee N, Lawson T et al. Notes from the Field: Enteroinvasive Escherichia coli Outbreak Associated with a Potluck Party - North Carolina, June-July 2018. MMWR Morb Mortal Wkly Rep 2019; 68:183–184 [View Article] [PubMed]
    [Google Scholar]
  21. Pettengill EA, Hoffmann M, Binet R, Roberts RJ, Payne J et al. Complete genome sequence of enteroinvasive Escherichia coli O96:H19 associated with a severe foodborne outbreak. Genome Announc 2015; 3:e00883-15 [View Article] [PubMed]
    [Google Scholar]
  22. Escher M, Scavia G, Morabito S, Tozzoli R, Maugliani A et al. A severe foodborne outbreak of diarrhoea linked to a canteen in Italy caused by enteroinvasive Escherichia coli, an uncommon agent. Epidemiol Infect 2014; 142:2559–2566 [View Article] [PubMed]
    [Google Scholar]
  23. Dhakal R, Wang Q, Lan R, Howard P, Sintchenko V. Novel multiplex PCR assay for identification and subtyping of enteroinvasive Escherichia coli and differentiation from Shigella based on target genes selected by comparative genomics. J Med Microbiol 2018; 67:1257–1264 [View Article] [PubMed]
    [Google Scholar]
  24. van den Beld MJ, Reubsaet FA. Differentiation between Shigella, enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology 2012; 31:899–904
    [Google Scholar]
  25. Pupo GM, Lan R, Reeves PR. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci U S A 2000; 97:10567–10572 [View Article] [PubMed]
    [Google Scholar]
  26. Lan R, Alles MC, Donohoe K, Martinez MB, Reeves PR. Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infect Immun 2004; 72:5080–5088 [View Article] [PubMed]
    [Google Scholar]
  27. Sahl JW, Morris CR, Emberger J, Fraser CM, Ochieng JB et al. Defining the phylogenomics of Shigella species: a pathway to diagnostics. J Clin Microbiol 2015; 53:951–960 [View Article] [PubMed]
    [Google Scholar]
  28. Pettengill EA, Pettengill JB, Binet R. Phylogenetic analyses of Shigella and enteroinvasive Escherichia coli for the identification of molecular epidemiological markers: whole-genome comparative analysis does not support distinct genera designation. Front Microbiol 2015; 6:1573 [View Article] [PubMed]
    [Google Scholar]
  29. Cheasty T, Rowe B. Antigenic relationships between the enteroinvasive Escherichia coli O antigens O28ac, O112ac, O124, O136, O143, O144, O152, and O164 and Shigella O antigens. J Clin Microbiol 1983; 17:681–684 [View Article] [PubMed]
    [Google Scholar]
  30. Landersjö C, Weintraub A, Widmalm G. Structure determination of the O-antigen polysaccharide from the enteroinvasive Escherichia coli (EIEC) O143 by component analysis and NMR spectroscopy. Carbohydr Res 1996; 291:209–216 [View Article] [PubMed]
    [Google Scholar]
  31. Linnerborg M, Weintraub A, Widmalm G. Structural studies of the O-antigen polysaccharide from the enteroinvasive Escherichia coli O164 cross-reacting with Shigella dysenteriae type 3. Eur J Biochem 1999; 266:460–466 [View Article] [PubMed]
    [Google Scholar]
  32. Lan R, Lumb B, Ryan D, Reeves PR. Molecular evolution of large virulence plasmid in Shigella clones and enteroinvasive Escherichia coli. Infect Immun 2001; 69:6303–6309 [View Article] [PubMed]
    [Google Scholar]
  33. Sansonetti PJ, d’Hauteville H, Ecobichon C, Pourcel C. Molecular comparison of virulence plasmids in Shigella and enteroinvasive Escherichia coli. Ann Microbiol (Paris) 1983; 134a:295–318 [PubMed]
    [Google Scholar]
  34. Hale TL. Genetic basis of virulence in Shigella species. Microbiol Rev 1991; 55:206–224 [View Article] [PubMed]
    [Google Scholar]
  35. Venkatesan MM, Buysse JM, Kopecko DJ. Use of Shigella flexneri ipaC and ipaH gene sequences for the general identification of Shigella spp. and enteroinvasive Escherichia coli. J Clin Microbiol 1989; 27:2687–2691 [View Article] [PubMed]
    [Google Scholar]
  36. Jin Q, Yuan Z, Xu J, Wang Y, Shen Y et al. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 2002; 30:4432–4441 [View Article] [PubMed]
    [Google Scholar]
  37. Yang F, Yang J, Zhang X, Chen L, Jiang Y et al. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 2005; 33:6445–6458 [View Article] [PubMed]
    [Google Scholar]
  38. Yang J, Nie H, Chen L, Zhang X, Yang F et al. Revisiting the molecular evolutionary history of Shigella spp. J Mol Evol 2007; 64:71–79 [View Article] [PubMed]
    [Google Scholar]
  39. Hyma KE, Lacher DW, Nelson AM, Bumbaugh AC, Janda JM et al. Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J Bacteriol 2005; 187:619–628 [View Article] [PubMed]
    [Google Scholar]
  40. Walters LL, Raterman EL, Grys TE, Welch RA. Atypical Shigella boydii 13 encodes virulence factors seen in attaching and effacing Escherichia coli. FEMS Microbiol Lett 2012; 328:20–25 [View Article] [PubMed]
    [Google Scholar]
  41. Hazen TH, Leonard SR, Lampel KA, Lacher DW, Maurelli AT et al. Investigating the relatedness of enteroinvasive Escherichia coli to Other E. coli and Shigella isolates by using comparative genomics. Infect Immun 2016; 84:2362–2371 [View Article] [PubMed]
    [Google Scholar]
  42. Silva RM, Toledo MR, Trabulsi LR. Biochemical and cultural characteristics of invasive Escherichia coli. J Clin Microbiol 1980; 11:441–444 [View Article] [PubMed]
    [Google Scholar]
  43. de Boer RF, Ott A, Kesztyüs B, Kooistra-Smid AMD. Improved detection of five major gastrointestinal pathogens by use of a molecular screening approach. J Clin Microbiol 2010; 48:4140–4146 [View Article] [PubMed]
    [Google Scholar]
  44. van den Beld MJC, Friedrich AW, van Zanten E, Reubsaet FAG, Kooistra-Smid MAMD et al. Multicenter evaluation of molecular and culture-dependent diagnostics for Shigella species and Entero-invasive Escherichia coli in the Netherlands. J Microbiol Methods 2016; 131:10–15S0167-7012(16)30273-1 [View Article] [PubMed]
    [Google Scholar]
  45. Van Lint P, De Witte E, Ursi JP, Van Herendael B, Van Schaeren J. A screening algorithm for diagnosing bacterial gastroenteritis by real-time PCR in combination with guided culture. Diagnostic Microbiology and Infectious Disease 2016; 85:255–259 [View Article]
    [Google Scholar]
  46. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN et al. Structure and genetics of Shigella O antigens. FEMS Microbiol Rev 2008; 32:627–653 [View Article] [PubMed]
    [Google Scholar]
  47. Cai HY, Lu L, Muckle CA, Prescott JF, Chen S. Development of a novel protein microarray method for serotyping Salmonella enterica strains. J Clin Microbiol 2005; 43:3427–3430 [View Article] [PubMed]
    [Google Scholar]
  48. Wattiau P, Boland C, Bertrand S. Methodologies for Salmonella enterica subsp. enterica subtyping: gold standards and alternatives. Appl Environ Microbiol 2011; 77:7877–7885 [View Article] [PubMed]
    [Google Scholar]
  49. Li Y, Cao B, Liu B, Liu D, Gao Q et al. Molecular detection of all 34 distinct O-antigen forms of Shigella. J Med Microbiol 2009; 58:69–81 [View Article] [PubMed]
    [Google Scholar]
  50. Sun Q, Lan R, Wang Y, Zhao A, Zhang S et al. Development of a multiplex PCR assay targeting O-antigen modification genes for molecular serotyping of Shigella flexneri. J Clin Microbiol 2011; 49:3766–3770 [View Article] [PubMed]
    [Google Scholar]
  51. van der Ploeg CA, Rogé AD, Bordagorría XL, de Urquiza MT, Castillo ABC et al. Design of two multiplex PCR assays for serotyping Shigella flexneri. Foodborne Pathog Dis 2018; 15:33–38 [View Article] [PubMed]
    [Google Scholar]
  52. van den Beld MJC, de Boer RF, Reubsaet FAG, Rossen JWA, Zhou K et al. Evaluation of a culture-dependent algorithm and a molecular algorithm for identification of Shigella spp., Escherichia coli, and enteroinvasive E. coli. J Clin Microbiol 2018; 56:e00510-18 [View Article] [PubMed]
    [Google Scholar]
  53. Løbersli I, Wester AL, Kristiansen Å, Brandal LT. Molecular differentiation of Shigella spp. from enteroinvasive E. coli. European Journal of Microbiology and Immunology 2016; 6:197–205 [View Article]
    [Google Scholar]
  54. Pavlovic M, Luze A, Konrad R, Berger A, Sing A et al. Development of a duplex real-time PCR for differentiation between E. coli and Shigella spp. J Appl Microbiol 2011; 110:1245–1251 [View Article] [PubMed]
    [Google Scholar]
  55. Kim HJ, Ryu JO, Song JY, Kim HY. Multiplex polymerase chain reaction for identification of Shigellae and four Shigella species using novel genetic markers screened by comparative genomics. Foodborne Pathog Dis 2017; 14:400–406 [View Article] [PubMed]
    [Google Scholar]
  56. Chattaway MA, Schaefer U, Tewolde R, Dallman TJ, Jenkins C. Identification of Escherichia coli and Shigella species from whole-genome sequences. J Clin Microbiol 2017; 55:616–623 [View Article] [PubMed]
    [Google Scholar]
  57. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 2017; 14:417–419 [View Article] [PubMed]
    [Google Scholar]
  58. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15:R46 [View Article] [PubMed]
    [Google Scholar]
  59. Alikhan NF, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet 2018; 14:e1007261 [View Article] [PubMed]
    [Google Scholar]
  60. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  61. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  62. Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article] [PubMed]
    [Google Scholar]
  63. Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J Clin Microbiol 2015; 53:2410–2426 [View Article] [PubMed]
    [Google Scholar]
  64. Hartl DL, Dykhuizen DE. The population genetics of Escherichia coli. Annu Rev Genet 1984; 18:31–68 [View Article]
    [Google Scholar]
  65. Hu D, Liu B, Wang L, Reeves PR. Living trees: high-quality reproducible and reusable construction of bacterial phylogenetic trees. Mol Biol Evol 2020; 37:563–575 [View Article] [PubMed]
    [Google Scholar]
  66. Letunic I, Bork P. teractive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
  67. Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C et al. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 2018; 28:1395–1404 [View Article] [PubMed]
    [Google Scholar]
  68. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv
    [Google Scholar]
  69. Buchrieser C, Glaser P, Rusniok C, Nedjari H, D’Hauteville H et al. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol Microbiol 2000; 38:760–771 [View Article] [PubMed]
    [Google Scholar]
  70. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  71. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841–842 [View Article] [PubMed]
    [Google Scholar]
  72. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  73. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  74. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  75. Senchenkova SN, Feng L, Yang J, Shashkov AS, Cheng J et al. Structural and genetic characterization of the Shigella boydii type 10 and type 6 O antigens. J Bacteriol 2005; 187:2551–2554 [View Article] [PubMed]
    [Google Scholar]
  76. Ansaruzzaman M, Kibriya AK, Rahman A, Neogi PK, Faruque AS et al. Detection of provisional serovars of Shigella dysenteriae and designation as S. dysenteriae serotypes 14 and 15. J Clin Microbiol 1995; 33:1423–1425 [View Article] [PubMed]
    [Google Scholar]
  77. Balows A. Manual of clinical microbiology. Murray PR, Baron EJ, Jorgenson JH, Pfaller MA, Yolken RH. eds In Diagnostic Microbiology, 8th. edn ASM Press; 2003 p 2113
    [Google Scholar]
  78. Woodward DL, Clark CG, Caldeira RA, Ahmed R, Soule G et al. Identification and characterization of Shigella boydii 20 serovar nov., a new and emerging Shigella serotype. J Med Microbiol 2005; 54:741–748 [View Article] [PubMed]
    [Google Scholar]
  79. Kim J, Lindsey RL, Garcia-Toledo L, Loparev VN, Rowe LA et al. High-quality whole-genome sequences for 59 historical Shigella strains generated with PacBio sequencing. Genome Announc 2018; 6:15
    [Google Scholar]
  80. Michelacci V, Prosseda G, Maugliani A, Tozzoli R, Sanchez S et al. Characterization of an emergent clone of enteroinvasive Escherichia coli circulating in Europe. Clin Microbiol Infect 2016; 22:287 [View Article]
    [Google Scholar]
  81. Liu J, Platts-Mills JA, Juma J, Kabir F, Nkeze J et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet 2016; 388:1291–1301S0140-6736(16)31529-X [View Article] [PubMed]
    [Google Scholar]
  82. Cho MS, Ahn TY, Joh K, Kwon OS, Jheong WH et al. A novel marker for the species-specific detection and quantitation of Shigella sonnei by targeting a methylase gene. J Microbiol Biotechnol 2012; 22:1113–1117 [View Article] [PubMed]
    [Google Scholar]
  83. Sansonetti PJ, Kopecko DJ, Formal SB. Shigella sonnei plasmids: evidence that a large plasmid is necessary for virulence. Infect Immun 1981; 34:75–83 [View Article] [PubMed]
    [Google Scholar]
  84. Feng L, Perepelov AV, Zhao G, Shevelev SD, Wang Q et al. Structural and genetic evidence that the Escherichia coli O148 O antigen is the precursor of the Shigella dysenteriae type 1 O antigen and identification of a glucosyltransferase gene. Microbiology (Reading) 2007; 153:139–147 [View Article] [PubMed]
    [Google Scholar]
  85. Göhmann S, Manning PA, Alpert CA, Walker MJ, Timmis KN. Lipopolysaccharide O-antigen biosynthesis in Shigella dysenteriae serotype 1: analysis of the plasmid-carried rfp determinant. Microb Pathog 1994; 16:53–64 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000704
Loading
/content/journal/mgen/10.1099/mgen.0.000704
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error