1887

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus responsible for the COVID-19 pandemic, continues to cause a significant public-health burden and disruption globally. Genomic epidemiology approaches point to most countries in the world having experienced many independent introductions of SARS-CoV-2 during the early stages of the pandemic. However, this situation may change with local lockdown policies and restrictions on travel, leading to the emergence of more geographically structured viral populations and lineages transmitting locally. Here, we report the first SARS-CoV-2 genomes from Palestine sampled from early March 2020, when the first cases were observed, through to August of 2020. SARS-CoV-2 genomes from Palestine fall across the diversity of the global phylogeny, consistent with at least nine independent introductions into the region. We identify one locally predominant lineage in circulation represented by 50 Palestinian SARS-CoV-2, grouping with genomes generated from Israel and the UK. We estimate the age of introduction of this lineage to 05/02/2020 (16/01/2020–19/02/2020), suggesting SARS-CoV-2 was already in circulation in Palestine predating its first detection in Bethlehem in early March. Our work highlights the value of ongoing genomic surveillance and monitoring to reconstruct the epidemiology of COVID-19 at both local and global scales.

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/R01356X/1)
    • Principle Award Recipient: FrançoisBalloux
  • University College London (Award Excellence Fellowship)
    • Principle Award Recipient: Lucyvan Dorp
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000584
2021-06-22
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/6/mgen000584.html?itemId=/content/journal/mgen/10.1099/mgen.0.000584&mimeType=html&fmt=ahah

References

  1. van Dorp L, Acman M, Richard D, Shaw LP, Ford CE et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet Evol 2020; 83:104351 [View Article] [PubMed]
    [Google Scholar]
  2. Duchene S, Featherstone L, Haritopoulou-Sinanidou M, Rambaut A, Lemey P et al. Temporal signal and the phylodynamic threshold of SARS-CoV-2. Virus Evol 2020; 6:veaa061 [View Article]
    [Google Scholar]
  3. Lu J, du Plessis L, Liu Z, Hill V, Kang M et al. Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell 2020; 181:997–1003 [View Article]
    [Google Scholar]
  4. Shu Y, McCauley J. GISAID: global initiative on sharing all influenza data – from vision to reality. Euro Surveill 2017; 22:30494 [View Article] [PubMed]
    [Google Scholar]
  5. Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Global Challenges 2017; 1:33–46 [View Article]
    [Google Scholar]
  6. Hadfield J. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 2018; 34:4121–4123 [View Article] [PubMed]
    [Google Scholar]
  7. Oude Munnink BB, Nieuwenhuijse DF, Stein M, O’Toole Á, Haverkate M et al. Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands. Nat Med 2020; 26:1405–1410 [View Article] [PubMed]
    [Google Scholar]
  8. Filipe ADS, Shepherd JG, Williams T, Hughes J, Aranday-Cortes E et al. Genomic epidemiology reveals multiple introductions of SARS-COV-2 from mainland Europe into Scotland. Nat Microbiol 2021; 6:112–122 [View Article]
    [Google Scholar]
  9. Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P et al. Spread of SARS-CoV-2 in the icelandic population. N Engl J Med 2020; 382:2302–2315 [View Article] [PubMed]
    [Google Scholar]
  10. du Plessis L, McCrone JT, Zarebski AE, Hill V, Ruis C et al. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science 2021; 371:708–712 [View Article]
    [Google Scholar]
  11. Deng X, Gu W, Federman S, du Plessis L, Pybus OG et al. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. Science 2020; 369:582–587 [View Article] [PubMed]
    [Google Scholar]
  12. Candido DS, Claro IM, de Jesus JG, Souza WM, Moreira FRR et al. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science 2020; 369:1255–1260 [View Article] [PubMed]
    [Google Scholar]
  13. Maurano MT, Ramaswami S, Zappile P, Dimartino D, Boytard L et al. Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York City region. Genome Res 2020; 30:1781–1788 [View Article]
    [Google Scholar]
  14. Juscamayta-López E, Tarazona D, Valdivia F, Rojas N, Carhuaricra D et al. Phylogenomics reveals multiple introductions and early spread of SARS-COV-2 into Peru. bioRxiv 2020296814 [View Article]
    [Google Scholar]
  15. Tayoun AA, Loney T, Khansaheb H, Ramaswamy S, Harilal D et al. Multiple early introductions of SARS-CoV-2 into a global travel hub in the Middle East. Sci Rep 2020; 10:17720 [View Article] [PubMed]
    [Google Scholar]
  16. Geoghegan JL, Ren X, Storey M, Hadfield J, Jelley L et al. Genomic epidemiology reveals transmission patterns and dynamics of SARS-CoV-2 in Aotearoa New Zealand. Nat Commun 2020; 11:6351 [View Article] [PubMed]
    [Google Scholar]
  17. Worobey M, Pekar J, Larsen BB, Nelson MI, Hill V et al. The emergence of SARS-CoV-2 in Europe and North America. Science 2020; 370:564–570 [View Article] [PubMed]
    [Google Scholar]
  18. Popa A, Genger J-W, Nicholson MD, Penz T, Schmid D et al. Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2. Sci Transl Med 2020; 12:eabe2555 [View Article] [PubMed]
    [Google Scholar]
  19. van Dorp L, Richard D, Tan CCS, Shaw LP, Acman M et al. No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2. Nat Commun 2020; 11:5986 [View Article] [PubMed]
    [Google Scholar]
  20. Pung R, Chiew CJ, Young BE, Chin S, Chen MI-C et al. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet 2020; 395:1039–1046 [View Article]
    [Google Scholar]
  21. Qutob N, Awartani F, Salah Z, Asia M, Abu Khader I et al. Seroprevalence of SARS-CoV-2 in the West Bank region of Palestine: a cross-sectional seroepidemiological study. BMJ Open 2021; 11:e044552 [View Article]
    [Google Scholar]
  22. Palestinian Ministry of Health 2020 http://site.moh.ps/
  23. Nazzal S. Coronavirus (covid-19) in Palestine; 2020 https://corona.ps/
  24. Miller S, Naccache SN, Samayoa E, Messacar K, Arevalo S et al. Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection in cerebrospinal fluid. Genome Res 2019; 29:831–842 [View Article] [PubMed]
    [Google Scholar]
  25. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv 20121207–3907
    [Google Scholar]
  26. De Maio N, Walker C, Borges R, Weilguny L, Slodkowicz G et al. Issues with SARS-COV-2 sequencing data. Virological 2020
    [Google Scholar]
  27. Turakhia Y, De Maio N, Thornlow B, Gozashti L, Lanfear R et al. Stability of SARS-CoV-2 phylogenies. PLOS Genet 2020; 16:e1009175 [View Article] [PubMed]
    [Google Scholar]
  28. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  29. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  30. Mai U, Mirarab S. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 2018; 19:272 [View Article] [PubMed]
    [Google Scholar]
  31. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019; 35:526–528 [View Article] [PubMed]
    [Google Scholar]
  32. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36 [View Article]
    [Google Scholar]
  33. Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol 2020; 5:1403–1407 [View Article]
    [Google Scholar]
  34. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article]
    [Google Scholar]
  35. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016; 32:2847–2849 [View Article] [PubMed]
    [Google Scholar]
  36. Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res 2018; 46:e134 [View Article] [PubMed]
    [Google Scholar]
  37. Ghafari M, du Plessis L, Pybus OG, Katzourakis A. Time dependence of SARS-CoV-2 substitution rates. Virological 2020
    [Google Scholar]
  38. Meyer AG, Spielman SJ, Bedford T, Wilke CO. Time dependence of evolutionary metrics during the 2009 pandemic influenza virus outbreak. Virus Evol 2015; 1:vev006 [View Article]
    [Google Scholar]
  39. Volz EM, Frost SDW. Scalable relaxed clock phylogenetic dating. Virus Evol 2017; 3:vex025
    [Google Scholar]
  40. Morel B, Barbera P, Czech L, Bettisworth B, Hübner L et al. Phylogenetic analysis of SARS-CoV-2 data is difficult. Mol Biol Evol 2021; 38:1777–1791 [View Article]
    [Google Scholar]
  41. Minskaia E. Discovery of an RNA virus 3’->5’ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A 2006; 103:5108–5113 [View Article] [PubMed]
    [Google Scholar]
  42. Lythgoe KA, Hall M, Ferretti L, de Cesare M, MacIntyre-Cockett G et al. SARS-COV-2 within-host diversity and transmission. Science 2021; 372:6539 [View Article]
    [Google Scholar]
  43. Tonkin-Hill G, Martincorena I, Amato R, Lawson ARJ, Gerstung M et al. Patterns of within-host genetic diversity in SARS-COV-2. bioRxiv 2020424229 [View Article]
    [Google Scholar]
  44. Max Roser Hannah Ritchie EOO, Hasell J. Coronavirus Pandemic (COVID-19) Our World Data; 2020
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000584
Loading
/content/journal/mgen/10.1099/mgen.0.000584
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error