1887

Abstract

The emergence of carbapenem resistance in represents a major global public health concern. Nosocomial outbreaks caused by multidrug-resistant are commonly reported to result in high morbidity and mortality due to limited treatment options. Between October 2019 and January 2020, two concurrent high-mortality nosocomial outbreaks occurred in a referral hospital in Ho Chi Minh City, Vietnam. We performed genome sequencing and phylogenetic analysis of eight isolates from infected patients and two environmental isolates for outbreak investigation. We identified two outbreaks caused by two distinct lineages of the international sequence type (ST) 16 clone, which displayed extensive drug resistance, including resistance to carbapenem and colistin. Carbapenem-resistant ST16 outbreak strains clustered tightly with previously described ST16 from other hospitals in Vietnam, suggesting local persistence and transmission of this particular clone in this setting. We found environmental isolates from a hospital bed and blood pressure cuff that were genetically linked to an outbreak case cluster, confirming the potential of high-touch surfaces as sources for nosocomial spread of . Further, we found colistin resistance caused by disruption of the gene by an IS-like element, and carbapenem resistance mediated by a transferable IncF/ plasmid carrying the IS-like element. Our study highlights the importance of coordinated efforts between clinical and molecular microbiologists and infection control teams to rapidly identify, investigate and contain nosocomial outbreaks. Routine surveillance with advanced sequencing technology should be implemented to strengthen hospital infection control and prevention measures.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000519
2021-02-10
2021-02-26
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10.1099/mgen.0.000519/mgen000519.html?itemId=/content/journal/mgen/10.1099/mgen.0.000519&mimeType=html&fmt=ahah

References

  1. CDC Antibiotic Resistance Threats in the United States Atlanta, GA: Centers for Disease Control and Prevention; 2013
    [Google Scholar]
  2. Tacconelli E, Margrini N. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics Geneva: World Health Organization; 2013
    [Google Scholar]
  3. Wyres KL, Nguyen TNT, Lam MMC, Judd LM, van Vinh Chau N et al. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from South and Southeast Asia. Genome Med 2020; 12: 11 [CrossRef] [PubMed]
    [Google Scholar]
  4. WHO Antimicrobial Resistance: Global Report on Surveillance Geneva: World Health Organization; 2014
    [Google Scholar]
  5. Public Health England Health protection report: weekly report. Heal Prot Rep 2017; 11:
    [Google Scholar]
  6. Moradigaravand D, Martin V, Peacock SJ, Parkhill J. Evolution and epidemiology of multidrug-resistant Klebsiella pneumoniae in the United Kingdom and Ireland. mBio 2017; 8: e01976-16 [CrossRef] [PubMed]
    [Google Scholar]
  7. Kristóf K, Szabó D, Marsh JW, Cser V, Janik L et al. Extended-spectrum beta-lactamase-producing Klebsiella spp. in a neonatal intensive care unit: risk factors for the infection and the dynamics of the molecular epidemiology. Eur J Clin Microbiol Infect Dis 2007; 26: 563 570 [CrossRef] [PubMed]
    [Google Scholar]
  8. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998; 11: 589 603 [CrossRef] [PubMed]
    [Google Scholar]
  9. Zhao Y, Zhang X, Torres VVL, Liu H, Rocker A et al. An outbreak of carbapenem-resistant and hypervirulent Klebsiella pneumoniae in an intensive care unit of a major teaching hospital in Wenzhou, China. Front Public Health 2019; 7: 229 [CrossRef] [PubMed]
    [Google Scholar]
  10. Saidel-Odes L, Borer A. Limiting and controlling carbapenem-resistant Klebsiella pneumoniae . Infect Drug Resist 2013; 7: 9 14 [CrossRef] [PubMed]
    [Google Scholar]
  11. Maltezou HC. Metallo-β-lactamases in Gram-negative bacteria: introducing the era of pan-resistance?. Int J Antimicrob Agents 2009; 33: 405.e1 405.e7 [CrossRef]
    [Google Scholar]
  12. Pereira GH, Garcia DO, Mostardeiro M, Fanti KSVN, Levin AS. Outbreak of carbapenem-resistant Klebsiella pneumoniae: two-year epidemiologic follow-up in a tertiary hospital. Mem Inst Oswaldo Cruz 2013; 108: 113 115 [CrossRef] [PubMed]
    [Google Scholar]
  13. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Henderson DK et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 2012; 4: 148ra116 [CrossRef] [PubMed]
    [Google Scholar]
  14. Chung The H, Karkey A, Pham Thanh D, Boinett CJ, Cain AK et al. A high-resolution genomic analysis of multidrug-resistant hospital outbreaks of Klebsiella pneumoniae . EMBO Mol Med 2015; 7: 227 239 [CrossRef] [PubMed]
    [Google Scholar]
  15. Wendt C, Schütt S, Dalpke AH, Konrad M, Mieth M et al. First outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in Germany. Eur J Clin Microbiol Infect Dis 2010; 29: 563 570 [CrossRef] [PubMed]
    [Google Scholar]
  16. Carmeli Y, Akova M, Cornaglia G, Daikos GL, Garau J et al. Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin Microbiol Infect 2010; 16: 102 111 [CrossRef] [PubMed]
    [Google Scholar]
  17. Stoesser N, Giess A, Batty EM, Sheppard AE, Walker AS et al. Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting. Antimicrob Agents Chemother 2014; 58: 7347 7357 [CrossRef] [PubMed]
    [Google Scholar]
  18. Pitout JDD, Nordmann P, Poirel L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 2015; 59: 5873 5884 [CrossRef] [PubMed]
    [Google Scholar]
  19. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae . Antimicrob Agents Chemother 2001; 45: 1151 1161 [CrossRef] [PubMed]
    [Google Scholar]
  20. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K et al. Characterization of a new metallo-β-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009; 53: 5046 5054 [CrossRef] [PubMed]
    [Google Scholar]
  21. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae . Antimicrob Agents Chemother 2004; 48: 15 22 [CrossRef] [PubMed]
    [Google Scholar]
  22. Wyres KL, Holt KE. Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends Microbiol 2016; 24: 944 956 [CrossRef] [PubMed]
    [Google Scholar]
  23. Naparstek L, Carmeli Y, Chmelnitsky I, Banin E, Navon-Venezia S. Reduced susceptibility to chlorhexidine among extremely-drug-resistant strains of Klebsiella pneumoniae . J Hosp Infect 2012; 81: 15 19 [CrossRef] [PubMed]
    [Google Scholar]
  24. Fontana C, Favaro M, Sarmati L, Natoli S, Altieri A et al. Emergence of KPC-producing Klebsiella pneumoniae in Italy. BMC Res Notes 2010; 3: 40 [CrossRef] [PubMed]
    [Google Scholar]
  25. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC et al. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol 2016; 7: 895 [CrossRef] [PubMed]
    [Google Scholar]
  26. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae . Emerg Infect Dis 2011; 17: 1791 1798 [CrossRef] [PubMed]
    [Google Scholar]
  27. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 2012; 25: 682 707 [CrossRef] [PubMed]
    [Google Scholar]
  28. El-Sayed Ahmed MAE-G, Zhong L-L, Shen C, Yang Y, Doi Y et al. Colistin and its role in the era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect 2020; 9: 868 885 [CrossRef] [PubMed]
    [Google Scholar]
  29. Chiu S-K, Wu T-L, Chuang Y-C, Lin J-C, Fung C-P et al. National surveillance study on carbapenem non-susceptible Klebsiella pneumoniae in Taiwan: the emergence and rapid dissemination of KPC-2 carbapenemase. PLoS One 2013; 8: e69428 [CrossRef] [PubMed]
    [Google Scholar]
  30. Monaco M, Giani T, Raffone M, Arena F, Garcia-Fernandez A et al. Colistin resistance superimposed to endemic carbapenem-resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, November 2013 to April 2014. Euro Surveill 2014; 19: 20939 [CrossRef] [PubMed]
    [Google Scholar]
  31. Giordano C, Barnini S, Tsioutis C, Chlebowicz MA, Scoulica EV et al. Expansion of KPC-producing Klebsiella pneumoniae with various mgrB mutations giving rise to colistin resistance: the role of ISL3 on plasmids. Int J Antimicrob Agents 2018; 51: 260 265 [CrossRef] [PubMed]
    [Google Scholar]
  32. Nordmann P, Jayol A, Poirel L. Rapid detection of polymyxin resistance in Enterobacteriaceae. Emerg Infect Dis 2016; 22: 1038 1043 [CrossRef] [PubMed]
    [Google Scholar]
  33. Cannatelli A, Di Pilato V, Giani T, Arena F, Ambretti S et al. In vivo evolution to colistin resistance by PmrB sensor kinase mutation in KPC-producing Klebsiella pneumoniae is associated with low-dosage colistin treatment. Antimicrob Agents Chemother 2014; 58: 4399 4403 [CrossRef]
    [Google Scholar]
  34. Olaitan AO, Dia NM, Gautret P, Benkouiten S, Belhouchat K et al. Acquisition of extended-spectrum cephalosporin- and colistin-resistant Salmonella enterica subsp. enterica serotype Newport by pilgrims during Hajj. Int J Antimicrob Agents 2015; 45: 600 604 [CrossRef] [PubMed]
    [Google Scholar]
  35. Cannatelli A, Giani T, D'Andrea MM, Di Pilato V, Arena F et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob Agents Chemother 2014; 58: 5696 5703 [CrossRef] [PubMed]
    [Google Scholar]
  36. Haeili M, Javani A, Moradi J, Jafari Z, Feizabadi MM et al. MgrB alterations mediate colistin resistance in Klebsiella pneumoniae isolates from Iran. Front Microbiol 2017; 8: 2470 [CrossRef] [PubMed]
    [Google Scholar]
  37. Jeannot K, Bolard A, Plésiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents 2017; 49: 526 535 [CrossRef] [PubMed]
    [Google Scholar]
  38. Wang X, Wang Y, Zhou Y, Li J, Yin W et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae . Emerg Microbes Infect 2018; 7: 122. [CrossRef] [PubMed]
    [Google Scholar]
  39. Le NK, Hf W, Vu PD, Khu DTK, Le HT et al. High prevalence of hospital-acquired infections caused by gram-negative carbapenem resistant strains in Vietnamese pediatric ICUs: a multi-centre point prevalence survey. Medicine 2016; 95: e4099 [CrossRef] [PubMed]
    [Google Scholar]
  40. Phu VD, Wertheim HFL, Larsson M, Nadjm B, Dinh QD et al. Burden of hospital acquired infections and antimicrobial use in Vietnamese adult intensive care units. PLoS One 2016; 11: e0147544 [CrossRef] [PubMed]
    [Google Scholar]
  41. Tada T, Tsuchiya M, Shimada K, Nga TTT, Thu LTA et al. Dissemination of carbapenem-resistant Klebsiella pneumoniae clinical isolates with various combinations of carbapenemases (KPC-2, NDM-1, NDM-4, and OXA-48) and 16S rRNA methylases (RmtB and rMTC) in Vietnam. BMC Infect Dis 2017; 17: 467 [CrossRef] [PubMed]
    [Google Scholar]
  42. Nguyen PH L. Defining the aetiology and antimicrobial susceptibility patterns of the predominant bacteria associated with bloodstream infections at the Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam. PhD thesis The Open University; Milton Keynes, UK: 2018
    [Google Scholar]
  43. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing 31 Wayne, PA: CLSI; 2017
    [Google Scholar]
  44. Promega Wizard Genomic DNA Purification Kit Technical Manual Madison, WI: Promega; 2012
    [Google Scholar]
  45. Illumina Nextera XT DNA Library Prep Reference Guide San Diego, CA: Illumina; 2016
    [Google Scholar]
  46. Andrews S. FastQC: a quality control tool for high throughput sequence data Cambridge: Babraham Bioinformatics; 2010
    [Google Scholar]
  47. Gordon A. FASTX-Toolkit command line arguments 2010
    [Google Scholar]
  48. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA 2015; 112: E3574 E3581 [CrossRef] [PubMed]
    [Google Scholar]
  49. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25: 2078 2079 [CrossRef] [PubMed]
    [Google Scholar]
  50. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2016; 2: e000102 [CrossRef] [PubMed]
    [Google Scholar]
  51. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012; 9: 811 814 [CrossRef] [PubMed]
    [Google Scholar]
  52. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312 1313 [CrossRef] [PubMed]
    [Google Scholar]
  53. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43: e15 [CrossRef] [PubMed]
    [Google Scholar]
  54. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6: 90 [CrossRef] [PubMed]
    [Google Scholar]
  55. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014; 58: 212 220 [CrossRef] [PubMed]
    [Google Scholar]
  56. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13: e1005595 [CrossRef] [PubMed]
    [Google Scholar]
  57. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30: 2068 2069 [CrossRef] [PubMed]
    [Google Scholar]
  58. Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 2010; 51 (Suppl. 1): S81 S87 [CrossRef] [PubMed]
    [Google Scholar]
  59. Falade AG, Ayede AI. Epidemiology, aetiology and management of childhood acute community-acquired pneumonia in developing countries – a review. Afr J Med Med Sci 2011; 40: 293 308 [PubMed]
    [Google Scholar]
  60. Jinadatha C, Villamaria FC, Coppin JD, Dale CR, Williams MD et al. Interaction of healthcare worker hands and portable medical equipment: a sequence analysis to show potential transmission opportunities. BMC Infect Dis 2017; 17: 800 [CrossRef] [PubMed]
    [Google Scholar]
  61. Huslage K, Rutala WA, Sickbert-Bennett E, Weber DJ. A quantitative approach to defining "high-touch" surfaces in hospitals. Infect Control Hosp Epidemiol 2010; 31: 850 853 [CrossRef] [PubMed]
    [Google Scholar]
  62. Han JH, Sullivan N, Leas BF, Pegues DA, Kaczmarek JL et al. Cleaning hospital room surfaces to prevent health care-associated infections: a technical brief. Ann Intern Med 2015; 163: 598 607 [CrossRef] [PubMed]
    [Google Scholar]
  63. de Gialluly C, Morange V, de Gialluly E, Loulergue J, van der Mee N et al. Blood pressure cuff as a potential vector of pathogenic microorganisms: a prospective study in a teaching hospital. Infect Control Hosp Epidemiol 2006; 27: 940 943 [CrossRef] [PubMed]
    [Google Scholar]
  64. Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 2014; 22: 686 696 [CrossRef] [PubMed]
    [Google Scholar]
  65. DeLeo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD et al. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae . Proc Natl Acad Sci USA 2014; 111: 4988 4993 [CrossRef] [PubMed]
    [Google Scholar]
  66. Wright MS, Perez F, Brinkac L, Jacobs MR, Kaye K et al. Population structure of KPC-producing Klebsiella pneumoniae isolates from midwestern U.S. hospitals. Antimicrob Agents Chemother 2014; 58: 4961 4965 [CrossRef] [PubMed]
    [Google Scholar]
  67. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013; 13: 785 796 [CrossRef] [PubMed]
    [Google Scholar]
  68. Andrey DO, Pereira Dantas P, Martins WBS, Marques De Carvalho F, Almeida LGP et al. An emerging clone, Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae sequence type 16, associated with high mortality rates in a CC258-endemic setting. Clin Infect Dis 2020; 71:: e141 e150 [CrossRef] [PubMed]
    [Google Scholar]
  69. Feng Y, Wei L, Zhu S, Qiao F, Zhang X et al. Handwashing sinks as the source of transmission of ST16 carbapenem-resistant Klebsiella pneumoniae, an international high-risk clone, in an intensive care unit. J Hosp Infect 2020; 104: 492 496 [CrossRef] [PubMed]
    [Google Scholar]
  70. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother 2012; 67: 1597 1606 [CrossRef] [PubMed]
    [Google Scholar]
  71. Berglund B, Hoang NTB, Tärnberg M, Le NK, Nilsson M et al. Molecular and phenotypic characterization of clinical isolates belonging to a KPC-2-producing strain of ST15 Klebsiella pneumoniae from a Vietnamese pediatric hospital. Antimicrob Resist Infect Control 2019; 8: 156 [CrossRef] [PubMed]
    [Google Scholar]
  72. Liu Y, Feng Y, Wu W, Xie Y, Wang X et al. First report of OXA-181-producing Escherichia coli in China and characterization of the isolate using whole-genome sequencing. Antimicrob Agents Chemother 2015; 59: 5022 5025 [CrossRef] [PubMed]
    [Google Scholar]
  73. Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN et al. Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY antimicrobial surveillance program, 2006-2007. Antimicrob Agents Chemother 2011; 55: 1274 1278 [CrossRef] [PubMed]
    [Google Scholar]
  74. Villa L, Carattoli A, Nordmann P, Carta C, Poirel L. Complete sequence of the IncT-type plasmid pT-OXA-181 carrying the blaOXA-181 carbapenemase gene from Citrobacter freundii . Antimicrob Agents Chemother 2013; 57: 1965 1967 [CrossRef] [PubMed]
    [Google Scholar]
  75. McGann P, Snesrud E, Ong AC, Appalla L, Koren M et al. War wound treatment complications due to transfer of an IncN plasmid harboring bla(OXA-181) from Morganella morganii to CTX-M-27-producing sequence type 131 Escherichia coli . Antimicrob Agents Chemother 2015; 59: 3556 3562 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000519
Loading
/content/journal/mgen/10.1099/mgen.0.000519
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error