1887

Abstract

Pre-existing colonization with or has been found to increase the risk of infection in intensive care patients. We previously conducted a longitudinal study to characterize colonization of these two organisms in patients admitted to intensive care in a hospital in southern Vietnam. Here, using genomic and phylogenetic analyses, we aimed to assess the contribution these colonizing organisms made to infections. We found that in the majority of patients infected with or , the sequence type of the disease-causing (infecting) isolate was identical to that of corresponding colonizing organisms in the respective patient. Further in-depth analysis revealed that in patients infected by ST188 and by ST17, ST23, ST25 and ST86, the infecting isolate was closely related to and exhibited limited genetic variation relative to pre-infection colonizing isolates. Multidrug-resistant ST188 was identified as the predominant agent of colonization and infection. Colonization and infection by were characterized by organisms with limited antimicrobial resistance profiles but extensive repertoires of virulence genes. Our findings augment the understanding of the link between bacterial colonization and infection in a low-resource setting, and could facilitate the development of novel evidence-based approaches to prevent and treat infections in high-risk patients in intensive care.

Funding
This study was supported by the:
  • StephenBaker , Wellcome Trust , (Award 215515/Z/19/Z)
  • HaoChung The , Wellcome Trust , (Award 218726/Z/19/Z)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000514
2021-01-27
2021-03-02
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/2/mgen000514.html?itemId=/content/journal/mgen/10.1099/mgen.0.000514&mimeType=html&fmt=ahah

References

  1. Donowitz LG, Wenzel RP, Hoyt JW. High risk of hospital-acquired infection in the ICU patient. Crit Care Med 1982; 10:355–357 p [CrossRef][PubMed]
    [Google Scholar]
  2. Weber DJ, Raasch R, Rutala WA. Nosocomial infections in the ICU: the growing importance of antibiotic-resistant pathogens. Chest 1999; 115:34S–41 [CrossRef][PubMed]
    [Google Scholar]
  3. WHO Report on the burden of endemic health care-associated infection worldwide clean care is safer care. World Heal Organ 20111–40
    [Google Scholar]
  4. Baker S, Thomson N, Weill FX, Holt KE. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science 2018; 360:733–738 [CrossRef][PubMed]
    [Google Scholar]
  5. Honda H, Krauss MJ, Coopersmith CM, Kollef MH, Richmond AM et al. Staphylococcus aureus nasal colonization and subsequent infection in intensive care unit patients: does methicillin resistance matter?. Infect Control Hosp Epidemiol 2010; 31:584–591 [CrossRef][PubMed]
    [Google Scholar]
  6. Kao K-C, Chen C-B, Hu H-C, Chang H-C, Huang C-C, Chung-Chi Huang Y-CH et al. Risk factors of methicillin-resistant Staphylococcus aureus infection and correlation with nasal colonization based on molecular genotyping in medical intensive care units: a prospective observational study. Medicine 2015; 94:1–7 [CrossRef][PubMed]
    [Google Scholar]
  7. Boucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus . Clin Infect Dis 2018; 46:
    [Google Scholar]
  8. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998; 11:589–603[PubMed]
    [Google Scholar]
  9. Centers for Disease Control and Prevention Antibiotic resistance threats in the United States; 2013
  10. Public health agency of Canada Antimicrobial resistance and use in Canada: a federal framework for action; 2014
  11. European Centre for Disease Prevention and Control Antimicrobial resistance surveillance in Europe 2015. annual report of the European antimicrobial resistance surveillance network (EARS-Net).
  12. Zowawi HM, Forde BM, Alfaresi M, Alzarouni A, Farahat Y et al. Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae . Sci Rep 2015; 5:15082 [CrossRef][PubMed]
    [Google Scholar]
  13. Thuy DB, Campbell J, Hoang NVM, Trinh TTT, Duong HTH et al. A one-year prospective study of colonization with antimicrobial-resistant organisms on admission to a Vietnamese intensive care unit. PLoS One 2017; 12:1–8 [CrossRef][PubMed]
    [Google Scholar]
  14. Thuy DB, Campbell JI, Nhat LTH, Hoang NVM, Van HN et al. Hospital-Acquired colonization and infections in a Vietnamese intensive care unit. PLoS One 20181–16
    [Google Scholar]
  15. Ellis MW, Griffith ME, Jorgensen JH, Hospenthal DR, Mende K et al. Presence and molecular epidemiology of virulence factors in methicillin-resistant Staphylococcus aureus strains colonizing and infecting soldiers. J Clin Microbiol 2009; 47:940–945 [CrossRef][PubMed]
    [Google Scholar]
  16. Rodriguez M, Hogan PG, Burnham CAD, Fritz SA. Molecular epidemiology of Staphylococcus aureus in households of children with community-associated S aureus skin and soft tissue infections. J Pediatr 2014; 164:105–111 [CrossRef][PubMed]
    [Google Scholar]
  17. Kang S, Lee J, Kim M. The association between Staphylococcus aureus nasal colonization and symptomatic infection in children in Korea where ST72 is the major genotype: a prospective observational study. Medicine 2017; 96:e7838 [CrossRef][PubMed]
    [Google Scholar]
  18. Little ML, Qin X, Zerr DM, Weissman SJ. Molecular epidemiology of colonizing and disease-causing Klebsiella pneumoniae in paediatric patients. J Med Microbiol 2014; 63:610–616 [CrossRef][PubMed]
    [Google Scholar]
  19. Martin RM, Cao J, Brisse S, Passet V, Wu W et al. Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae . mSphere 2016; 1:1–12 [CrossRef][PubMed]
    [Google Scholar]
  20. Gorrie CL, Mirceta M, Wick RR, Edwards DJ, Thomson NR. Gastrointestinal carriage is a major reservoir of K. pneumoniae infection in intensive care patients. Clin Infect Dis [Internet] 2017; 00:1–8
    [Google Scholar]
  21. Centers for Disease Control and Prevention Cdc / NHSN surveillance definitions for specific types of infections; 2014
  22. Friedman ND et al. Health Care–Associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 2002; 137:791–798 [CrossRef][PubMed]
    [Google Scholar]
  23. European Centre for Disease Prevention and Control Annual epidemiological report on communicable diseases in Europe; 2008; 2008
  24. CLSI Performance standards for antimicrobial susceptibility testing. Twenty-Fourth Information Supplement 2014
    [Google Scholar]
  25. Connor TR, Loman NJ, Thompson S, Smith A, Southgate J et al. CLIMB (the cloud infrastructure for microbial bioinformatics): an online resource for the medical microbiology community. Microb Genom 2016; 2:e000086 [CrossRef][PubMed]
    [Google Scholar]
  26. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:1–21 [CrossRef][PubMed]
    [Google Scholar]
  27. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010; 26:589–595 [CrossRef][PubMed]
    [Google Scholar]
  28. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [CrossRef][PubMed]
    [Google Scholar]
  29. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  30. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15–13 [CrossRef][PubMed]
    [Google Scholar]
  31. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  32. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol 2015; 11:1–18 [CrossRef][PubMed]
    [Google Scholar]
  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  34. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  36. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [CrossRef][PubMed]
    [Google Scholar]
  37. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 2009; 25:1968–1969 [CrossRef][PubMed]
    [Google Scholar]
  38. Galata V, Fehlmann T, Backes C, Keller A. PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res 2019; 47:D195–202 [CrossRef][PubMed]
    [Google Scholar]
  39. Carver T, Berriman M, Tivey A, Patel C, Böhme U et al. Artemis and act: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 2008; 24:2672–2676 [CrossRef][PubMed]
    [Google Scholar]
  40. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ani analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:1–8
    [Google Scholar]
  41. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [CrossRef][PubMed]
    [Google Scholar]
  42. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019; 47:D687–692 [CrossRef][PubMed]
    [Google Scholar]
  43. Kaya H, Hasman H, Larsen J, Stegger M, Johannesen TB et al. SCCmecFinder, a Web-Based tool for typing of Staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 2018; 3:1–9 [CrossRef][PubMed]
    [Google Scholar]
  44. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2016; 2:1–15 [CrossRef][PubMed]
    [Google Scholar]
  45. MMC L, Wick RR, Wyres KL, Gorrie C, Judd LM et al. Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations. bioRxiv 2017; 098178:
    [Google Scholar]
  46. Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P et al. Passage of heme-iron across the envelope of Staphylococcus aureus . Science 2003; 299:906–909 [CrossRef][PubMed]
    [Google Scholar]
  47. Powers ME, Bubeck Wardenburg J, Wardenburg JB. Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog 2014; 10:10–13 [CrossRef][PubMed]
    [Google Scholar]
  48. Aung MS, Urushibara N, Kawaguchiya M, Sumi A, Takahashi S et al. Molecular epidemiological characterization of Staphylococcus argenteus clinical isolates in Japan: identification of three clones (ST1223, ST2198, and ST2550) and a novel staphylocoagulase genotype XV. Microorganisms 2019; 7:27–29
    [Google Scholar]
  49. Holt KE, Wertheim H, Zadoks RN, Baker S, a WC et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci 2015201501049
    [Google Scholar]
  50. Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae . Clin Microbiol Rev 2019; 32:1–42
    [Google Scholar]
  51. Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF et al. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 2004; 337:189–198 [CrossRef][PubMed]
    [Google Scholar]
  52. Le L, Tran LK, Le-Ha TD, Tran BP, Le-Vo HN et al. Coexistence of plasmid-mediated mcr-1 and bla NDM-4genes in a Klebsiella pneumoniae clinical strain in Vietnam. Infect Drug Resist 2019; 12:3703–3707 [CrossRef][PubMed]
    [Google Scholar]
  53. Livermore DM, Day M, Cleary P, Hopkins KL, Toleman MA et al. Oxa-1 β-lactamase and non-susceptibility to penicillin/β-lactamase inhibitor combinations among ESBL-producing Escherichia coli . J Antimicrob Chemother 2019; 74:326–333 [CrossRef][PubMed]
    [Google Scholar]
  54. Torres E, López-Cerero L, Rodríguez-Martínez JM, Pascual Álvaro. Reduced susceptibility to cefepime in clinical isolates of Enterobacteriaceae producing OXA-1 beta-lactamase. Microb Drug Resist 2016; 22:141–146 [CrossRef][PubMed]
    [Google Scholar]
  55. von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 2001; 344:11–16 [CrossRef][PubMed]
    [Google Scholar]
  56. Wang Y, Liu Q, Liu Q, Gao Q, Lu H et al. Phylogenetic analysis and virulence determinant of the host-adapted Staphylococcus aureus lineage ST188 in China. Emerg Microbes Infect 2018; 7:1–11
    [Google Scholar]
  57. Chen F, Siu LK, Lin J, Wang C, Lu P. Molecular typing and characterization of nasal carriage and community-onset infection methicillin-susceptible Staphylococcus aureus isolates in two Taiwan medical centers. BMC Infect Dis 2012; 12:1
    [Google Scholar]
  58. Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus . PLoS One 2011; 6:1–24 [CrossRef][PubMed]
    [Google Scholar]
  59. Ghaznavi-Rad E, Nor Shamsudin M, Sekawi Z, Khoon LY, Aziz MN et al. Predominance and emergence of clones of hospital-acquired methicillin-resistant Staphylococcus aureus in Malaysia. J Clin Microbiol 2010; 48:867–872 [CrossRef][PubMed]
    [Google Scholar]
  60. Ngoc Thi Vu B, J Jafari A, Aardema M, Kieu Thi Tran H, Ngoc Thi Nguyen D et al. Population structure of colonizing and invasive Staphylococcus aureus strains in northern Vietnam. J Med Microbiol 2016; 65:298–305 [CrossRef][PubMed]
    [Google Scholar]
  61. Thai Son N, Thu Huong VT, Kim Lien VT, Quynh Nga DT, Hai Au TT et al. Antimicrobial resistance profile and molecular characteristics of Staphylococcus aureus isolates from hospitalized adults in three regions of Vietnam. Jpn J Infect Dis 2020; 73:193–200 [CrossRef][PubMed]
    [Google Scholar]
  62. Monecke S, Stieber B, Roberts R, Akpaka PE, Slickers P et al. Population structure of Staphylococcus aureus from Trinidad & Tobago. PLoS One 2014; 9:e89120 [CrossRef][PubMed]
    [Google Scholar]
  63. Thaipadungpanit J, Amornchai P, Nickerson EK, Wongsuvan G, Wuthiekanun V et al. Clinical and molecular epidemiology of Staphylococcus argenteus infections in Thailand. J Clin Microbiol 2015; 53:1005–1008 [CrossRef][PubMed]
    [Google Scholar]
  64. Chen SY, Lee H, Teng SH, Wang XM, Lee TF et al. Accurate differentiation of novel Staphylococcus argenteus from Staphylococcus aureus using MALDI-TOF MS. Future Microbiol 2018; 13:997–1006 [CrossRef][PubMed]
    [Google Scholar]
  65. Holt DC, Holden MTG, Tong SYC, Castillo-Ramirez S, Clarke L et al. A very early-branching Staphylococcus aureus lineage lacking the carotenoid pigment staphyloxanthin. Genome Biol Evol 2011; 3:881–895 [CrossRef][PubMed]
    [Google Scholar]
  66. Tong SYC, Sharma-Kuinkel BK, Thaden JT, Whitney AR, Yang S-J et al. Virulence of endemic nonpigmented Northern Australian Staphylococcus aureus clone (clonal complex 75, S. argenteus) is not augmented by staphyloxanthin. J Infect Dis [Internet] 2013; 208:520–527
    [Google Scholar]
  67. Chantratita N, Wikraiphat C, Tandhavanant S, Wongsuvan G, Ariyaprasert P et al. Comparison of community-onset Staphylococcus argenteus and Staphylococcus aureus sepsis in Thailand: a prospective multicentre observational study. Clin Microbiol Infect 2016; 22:458.e11–458458 [CrossRef][PubMed]
    [Google Scholar]
  68. Shon AS, Bajwa RPS, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013; 4:107–118 [CrossRef][PubMed]
    [Google Scholar]
  69. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 2015; 112:E3574–E3581 [CrossRef][PubMed]
    [Google Scholar]
  70. Rettedal S, Löhr IH, Natås O, Giske CG, Sundsfjord A et al. First outbreak of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a Norwegian neonatal intensive care unit; associated with contaminated breast milk and resolved by strict cohorting. APMIS 2012; 120:612–621 [CrossRef][PubMed]
    [Google Scholar]
  71. Wyres KL, Wick RR, Judd LM, Froumine R, Tokolyi A et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet 2019; 15:1–25 [CrossRef][PubMed]
    [Google Scholar]
  72. Zhou K, Xiao T, David S, Wang Q, Zhou Y et al. Novel subclone of Klebsiella pneumoniae sequence type 11 with enhanced virulence. Emerg Infect Dis 2020; 26:289–297
    [Google Scholar]
  73. Tosh PK, McDonald LC. Infection control in the multidrug-resistant era: tending the human microbiome. Clin Infect Dis 2012; 54:707–713 [CrossRef][PubMed]
    [Google Scholar]
  74. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013; 13:785–796 [CrossRef][PubMed]
    [Google Scholar]
  75. Scully BE, Briones F, Gu JW, Neu HC, Francisco Briones JG. Mupirocin treatment of nasal staphylococcal colonization. Arch Intern Med 1992; 152:353–356[PubMed]
    [Google Scholar]
  76. Hudson IR, Pharmaceuticals B, Road L. The efficacy of intranasal mupirocin in the prevention of staphylococcal infections: a review of recent experience. J Hosp Infect 1994; 27:81–98 [CrossRef][PubMed]
    [Google Scholar]
  77. Bonten MJM. Selective digestive tract decontamination — will it prevent infection with multidrug-resistant gram-negative pathogens but still be applicable in institutions where methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci are endemic?. Clin Infect Dis 2006; 43:S70–S74 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000514
Loading
/content/journal/mgen/10.1099/mgen.0.000514
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error