1887

Abstract

Tetracyclines are broad-spectrum antibiotics used to prevent or treat a variety of bacterial infections. Resistance is often mediated through mobile resistance genes, which encode one of the three main mechanisms: active efflux, ribosomal target protection or enzymatic degradation. In the last few decades, a large number of new tetracycline-resistance genes have been discovered in clinical settings. These genes are hypothesized to originate from environmental and commensal bacteria, but the diversity of tetracycline-resistance determinants that have not yet been mobilized into pathogens is unknown. In this study, we aimed to characterize the potential tetracycline resistome by screening genomic and metagenomic data for novel resistance genes. By using probabilistic models, we predicted 1254 unique putative tetracycline resistance genes, representing 195 gene families (<70 % amino acid sequence identity), whereof 164 families had not been described previously. Out of 17 predicted genes selected for experimental verification, 7 induced a resistance phenotype in an host. Several of the predicted genes were located on mobile genetic elements or in regions that indicated mobility, suggesting that they easily can be shared between bacteria. Furthermore, phylogenetic analysis indicated several events of horizontal gene transfer between bacterial phyla. Our results also suggested that acquired efflux pumps originate from proteobacterial species, while ribosomal protection genes have been mobilized from and . This study significantly expands the knowledge of known and putatively novel tetracycline resistance genes, their mobility and evolutionary history. The study also provides insights into the unknown resistome and genes that may be encountered in clinical settings in the future.

Funding
This study was supported by the:
  • D.G. Joakim Larsson , Vetenskapsrådet , (Award 2016-06512, 2018-02835)
  • Erik Kristiansson , Vetenskapsrådet , (Award 2019-03482)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000455
2020-10-30
2020-12-01
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/11/mgen000455.html?itemId=/content/journal/mgen/10.1099/mgen.0.000455&mimeType=html&fmt=ahah

References

  1. Thaker M, Spanogiannopoulos P, Wright GD. The tetracycline resistome. Cell Mol Life Sci 2010; 67:419–431 [CrossRef][PubMed]
    [Google Scholar]
  2. Hao H, Cheng G, Iqbal Z, Ai X, Hussain HI et al. Benefits and risks of antimicrobial use in food-producing animals. Front Microbiol 2014; 5:288 [CrossRef][PubMed]
    [Google Scholar]
  3. European Food Safety Authority European Centre for Disease Prevention and Control The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J 2019; 17:e05598 [CrossRef][PubMed]
    [Google Scholar]
  4. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65:232–260 [CrossRef][PubMed]
    [Google Scholar]
  5. Forsberg KJ, Patel S, Wencewicz TA, Dantas G. The tetracycline destructases: a novel family of tetracycline-inactivating enzymes. Chem Biol 2015; 22:888–897 [CrossRef][PubMed]
    [Google Scholar]
  6. Roberts MC. GenBank numbers 2018 https://faculty.washington.edu/marilynr/
  7. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012; 337:1107–1111 [CrossRef][PubMed]
    [Google Scholar]
  8. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J et al. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 2010; 8:251–259 [CrossRef][PubMed]
    [Google Scholar]
  9. Moore IF, Hughes DW, Wright GD. Tigecycline is modified by the flavin-dependent monooxygenase TetX. Biochemistry 2005; 44:11829–11835 [CrossRef][PubMed]
    [Google Scholar]
  10. Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW et al. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem 2004; 279:52346–52352 [CrossRef][PubMed]
    [Google Scholar]
  11. Guiney DG, Hasegawa P, Davis CE. Expression in Escherichia coli of cryptic tetracycline resistance genes from Bacteroides R plasmids. Plasmid 1984; 11:248–252 [CrossRef][PubMed]
    [Google Scholar]
  12. Aminov RI. Evolution in action: dissemination of tet(X) into pathogenic microbiota. Front Microbiol 2013; 4:192 [CrossRef][PubMed]
    [Google Scholar]
  13. Leski TA, Bangura U, Jimmy DH, Ansumana R, Lizewski SE et al. Multidrug-resistant tet(X)-containing hospital isolates in Sierra Leone. Int J Antimicrob Agents 2013; 42:83–86 [CrossRef][PubMed]
    [Google Scholar]
  14. Speer BS, Bedzyk L, Salyers AA. Evidence that a novel tetracycline resistance gene found on two Bacteroides transposons encodes an NADP-requiring oxidoreductase. J Bacteriol 1991; 173:176–183 [CrossRef][PubMed]
    [Google Scholar]
  15. D'Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science 2006; 311:374–377 [CrossRef][PubMed]
    [Google Scholar]
  16. Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J. Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J 2009; 3:243–251 [CrossRef][PubMed]
    [Google Scholar]
  17. Marathe NP, Janzon A, Kotsakis SD, Flach CF, Razavi M et al. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. Environ Int 2018; 112:279–286 [CrossRef][PubMed]
    [Google Scholar]
  18. Riesenfeld CS, Goodman RM, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 2004; 6:981–989 [CrossRef][PubMed]
    [Google Scholar]
  19. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J et al. Genbank. Nucleic Acids Res 2018; 46:D41–D47 [CrossRef][PubMed]
    [Google Scholar]
  20. Boulund F, Berglund F, Flach CF, Bengtsson-Palme J, Marathe NP et al. Computational discovery and functional validation of novel fluoroquinolone resistance genes in public metagenomic data sets. BMC Genomics 2017; 18:682 [CrossRef][PubMed]
    [Google Scholar]
  21. Berglund F, Marathe NP, Osterlund T, Bengtsson-Palme J, Kotsakis S et al. Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data. Microbiome 2017; 5:134 [CrossRef][PubMed]
    [Google Scholar]
  22. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [CrossRef][PubMed]
    [Google Scholar]
  23. Krueger F. Trim Galore: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files Cambridge: The Babraham Institute; 2015
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  25. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [CrossRef][PubMed]
    [Google Scholar]
  26. Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev 1996; 60:575–608 [CrossRef][PubMed]
    [Google Scholar]
  27. Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH. The major facilitator superfamily (MFS) revisited. FEBS J 2012; 279:2022–2035 [CrossRef][PubMed]
    [Google Scholar]
  28. Huerta-Cepas J, Dopazo J, Gabaldón T. ETE: a python environment for tree exploration. BMC Bioinformatics 2010; 11:24 [CrossRef][PubMed]
    [Google Scholar]
  29. Edgar RC. Search and clustering orders of magnitude faster than blast . Bioinformatics 2010; 26:2460–2461 [CrossRef][PubMed]
    [Google Scholar]
  30. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  31. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  32. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [CrossRef][PubMed]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  34. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [CrossRef][PubMed]
    [Google Scholar]
  35. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F et al. CDD: NCBI's conserved domain database. Nucleic Acids Res 2015; 43:D222–D226 [CrossRef][PubMed]
    [Google Scholar]
  36. Speer BS, Shoemaker NB, Salyers AA. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev 1992; 5:387–399 [CrossRef][PubMed]
    [Google Scholar]
  37. Allmeier H, Cresnar B, Greck M, Schmitt R. Complete nucleotide sequence of Tn1721: gene organization and a novel gene product with features of a chemotaxis protein. Gene 1992; 111:11–20 [CrossRef][PubMed]
    [Google Scholar]
  38. NCCLS Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard Wayne, PA: National Committee for Clinical Laboratory Standards; 2006
    [Google Scholar]
  39. Schuurmans JM, Nuri Hayali AS, Koenders BB, ter Kuile BH. Variations in MIC value caused by differences in experimental protocol. J Microbiol Methods 2009; 79:44–47 [CrossRef][PubMed]
    [Google Scholar]
  40. Human Microbiome Jumpstart Reference Strains Consortium Nelson KE, Weinstock GM, Highlander SK, Worley KC et al. A catalog of reference genomes from the human microbiome. Science 2010; 328:994–999 [CrossRef][PubMed]
    [Google Scholar]
  41. Bengtsson-Palme J, Hammarén R, Pal C, Östman M, Björlenius B et al. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci Total Environ 2016; 572:697–712 [CrossRef][PubMed]
    [Google Scholar]
  42. Marathe NP, Pal C, Gaikwad SS, Jonsson V, Kristiansson E et al. Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. Water Res 2017; 124:388–397 [CrossRef][PubMed]
    [Google Scholar]
  43. Xiao L, Estellé J, Kiilerich P, Ramayo-Caldas Y, Xia Z et al. A reference gene catalogue of the pig gut microbiome. Nat Microbiol 2016; 1:16161 [CrossRef][PubMed]
    [Google Scholar]
  44. Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature 2012; 486:207–214 [CrossRef][PubMed]
    [Google Scholar]
  45. Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C et al. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One 2011; 6:e17038 [CrossRef][PubMed]
    [Google Scholar]
  46. Qin J, Li Y, Cai Z, Li S, Zhu J et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490:55–60 [CrossRef][PubMed]
    [Google Scholar]
  47. Karsenti E, Acinas SG, Bork P, Bowler C, De Vargas C et al. A holistic approach to marine eco-systems biology. PLoS Biol 2011; 9:e1001177 [CrossRef][PubMed]
    [Google Scholar]
  48. Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 2012; 6:1715–1727 [CrossRef][PubMed]
    [Google Scholar]
  49. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol 2014; 5:648 [CrossRef][PubMed]
    [Google Scholar]
  50. Rutgersson C, Fick J, Marathe N, Kristiansson E, Janzon A et al. Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges. Environ Sci Technol 2014; 48:7825–7832 [CrossRef][PubMed]
    [Google Scholar]
  51. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 2014; 5:172 [CrossRef][PubMed]
    [Google Scholar]
  52. Whittle G, Hund BD, Shoemaker NB, Salyers AA. Characterization of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT. Appl Environ Microbiol 2001; 67:3488–3495 [CrossRef][PubMed]
    [Google Scholar]
  53. Thacker WL, Dyke JW, Benson RF, Havlichek DH, Robinson-Dunn B et al. Legionella lansingensis sp. nov. isolated from a patient with pneumonia and underlying chronic lymphocytic leukemia. J Clin Microbiol 1992; 30:2398–2401 [CrossRef][PubMed]
    [Google Scholar]
  54. Vouga M, Baud D, Greub G. Simkania negevensis, an insight into the biology and clinical importance of a novel member of the Chlamydiales order. Crit Rev Microbiol 2017; 43:62–80 [CrossRef][PubMed]
    [Google Scholar]
  55. Kelesidis T, Tsiodras S. Clostridium sphenoides bloodstream infection in man. Emerg Infect Dis 2011; 17:156–158 [CrossRef][PubMed]
    [Google Scholar]
  56. Alippi AM, León IE, López AC. Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys. Int Microbiol 2014; 17:49–61 [CrossRef][PubMed]
    [Google Scholar]
  57. Doyle D, McDowall KJ, Butler MJ, Hunter IS. Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus . Mol Microbiol 1991; 5:2923–2933 [CrossRef][PubMed]
    [Google Scholar]
  58. Dittrich W, Schrempf H. The unstable tetracycline resistance gene of Streptomyces lividans 1326 encodes a putative protein with similarities to translational elongation factors and Tet(M) and Tet(O) proteins. Antimicrob Agents Chemother 1992; 36:1119–1124 [CrossRef][PubMed]
    [Google Scholar]
  59. Kupferschmied P, Maurhofer M, Keel C. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front Plant Sci 2013; 4:287 [CrossRef][PubMed]
    [Google Scholar]
  60. Gweon HS, Shaw LP, Swann J, De Maio N, AbuOun M et al. The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples. Environ Microbiome 2019; 14:7 [CrossRef]
    [Google Scholar]
  61. Lanza VF, Baquero F, Martínez JL, Ramos-Ruíz R, González-Zorn B et al. In-depth resistome analysis by targeted metagenomics. Microbiome 2018; 6:11 [CrossRef][PubMed]
    [Google Scholar]
  62. Pohl S, Klockgether J, Eckweiler D, Khaledi A, Schniederjans M et al. The extensive set of accessory Pseudomonas aeruginosa genomic components. FEMS Microbiol Lett 2014; 356:235–241 [CrossRef][PubMed]
    [Google Scholar]
  63. Pérez Carrascal OM, VanInsberghe D, Juárez S, Polz MF, Vinuesa P et al. Population genomics of the symbiotic plasmids of sympatric nitrogen-fixing Rhizobium species associated with Phaseolus vulgaris . Environ Microbiol 2016; 18:2660–2676 [CrossRef][PubMed]
    [Google Scholar]
  64. Alexandre A, Laranjo M, Oliveira S. Natural populations of chickpea rhizobia evaluated by antibiotic resistance profiles and molecular methods. Microb Ecol 2006; 51:128–136 [CrossRef][PubMed]
    [Google Scholar]
  65. Li G, Zhang T, Yang L, Cao Y, Guo X et al. Complete genome sequence of Achromobacter insolitus type strain LMG 6003T, a pathogen isolated from leg wound. Pathog Dis 2017; 75:ftx037 [CrossRef][PubMed]
    [Google Scholar]
  66. Alnor D, Frimodt-Møller N, Espersen F, Frederiksen W. Infections with the unusual human pathogens Agrobacterium species and Ochrobactrum anthropi . Clin Infect Dis 1994; 18:914–920 [CrossRef][PubMed]
    [Google Scholar]
  67. Kanjee R, Koreishi AF, Tanna AP, Goldstein DA. Chronic postoperative endophthalmitis after cataract surgery secondary to vancomycin-resistant Ochrobactrum anthropi: case report and literature review. J Ophthalmic Inflamm Infect 2016; 6:25 [CrossRef][PubMed]
    [Google Scholar]
  68. Degand N, Lotte R, Decondé Le Butor C, Segonds C, Thouverez M et al. Epidemic spread of Pandoraea pulmonicola in a cystic fibrosis center. BMC Infect Dis 2015; 15:583 [CrossRef][PubMed]
    [Google Scholar]
  69. Rosales-Reyes R, Sánchez-Gómez C, Ortiz-Navarrete V, Santos-Preciado JI. Burkholderia cenocepacia induces macropinocytosis to enter macrophages. Biomed Res Int 2018; 2018:4271560 [CrossRef][PubMed]
    [Google Scholar]
  70. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008; 21:538–582 [CrossRef][PubMed]
    [Google Scholar]
  71. Mahillon J, Chandler M. Insertion sequences. Microbiol Mol Biol Rev 1998; 62:725–774 [CrossRef][PubMed]
    [Google Scholar]
  72. Benveniste R, Davies J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci USA 1973; 70:2276–2280 [CrossRef][PubMed]
    [Google Scholar]
  73. van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2018; 35:575–604 [CrossRef][PubMed]
    [Google Scholar]
  74. Tolba S, Egan S, Kallifidas D, Wellington EM. Distribution of streptomycin resistance and biosynthesis genes in streptomycetes recovered from different soil sites. FEMS Microbiol Ecol 2002; 42:269–276 [CrossRef][PubMed]
    [Google Scholar]
  75. Romano S, Aujoulat F, Jumas-Bilak E, Masnou A, Jeannot JL et al. Multilocus sequence typing supports the hypothesis that Ochrobactrum anthropi displays a human-associated subpopulation. BMC Microbiol 2009; 9:267 [CrossRef][PubMed]
    [Google Scholar]
  76. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2016; 44:D733–D745
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000455
Loading
/content/journal/mgen/10.1099/mgen.0.000455
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error