1887

Abstract

bacteria are ubiquitous at acid mine drainage sites and play key roles in the remediation of water at these locations by oxidizing arsenite to arsenate, favouring the sorption of arsenic by iron oxides and their coprecipitation. Understanding the adaptive capacities of these bacteria is crucial to revealing how they persist and remain active in such extreme conditions. Interestingly, it was previously observed that after exposure to arsenite, when grown in a biofilm, some strains of bacteria develop variants that are more resistant to arsenic. Here, we identified the mechanisms involved in the emergence of such variants in biofilms. We found that the percentage of variants generated increased in the presence of high concentrations of arsenite (5.33 mM), especially in the detached cells after growth under biofilm-forming conditions. Analysis of gene expression in the parent strain CB2 revealed that genes involved in DNA repair were upregulated in the conditions where variants were observed. Finally, we assessed the phenotypes and genomes of the subsequent variants generated to evaluate the number of mutations compared to the parent strain. We determined that multiple point mutations accumulated after exposure to arsenite when cells were grown under biofilm conditions. Some of these mutations were found in what is referred to as ICE19, a genomic island (GI) carrying arsenic-resistance genes, also harbouring characteristics of an integrative and conjugative element (ICE). The mutations likely favoured the excision and duplication of this GI. This research aids in understanding how bacteria adapt to highly toxic environments, and, more generally, provides a window to bacterial genome evolution in extreme environments.

Funding
This study was supported by the:
  • Jean-Yves Coppée , Agence Nationale de la Recherche , (Award ANR10-NBS-09-08)
  • Florence Arsène-Ploetze , Agence Nationale de la Recherche , (Award ANR-12-ADAP-0013)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000447
2020-10-09
2020-10-30
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/10/mgen000447.html?itemId=/content/journal/mgen/10.1099/mgen.0.000447&mimeType=html&fmt=ahah

References

  1. Brooks AN, Turkarslan S, Beer KD, Lo FY, Baliga NS. Adaptation of cells to new environments. Wiley Interdiscip Rev Syst Biol Med 2011; 3:544–561 [CrossRef][PubMed]
    [Google Scholar]
  2. Shinagawa H. SOS response as an adaptive response to DNA damage in prokaryotes. EXS 1996; 77:221–235 [CrossRef][PubMed]
    [Google Scholar]
  3. Lukačišinová M, Novak S, Paixão T. Stress-induced mutagenesis: stress diversity facilitates the persistence of mutator genes. PLoS Comput Biol 2017; 13:e1005609 [CrossRef][PubMed]
    [Google Scholar]
  4. Wielgoss S, Barrick JE, Tenaillon O, Wiser MJ, Dittmar WJ et al. Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc Natl Acad Sci USA 2013; 110:222–227 [CrossRef][PubMed]
    [Google Scholar]
  5. Good BH, Desai MM. Evolution of mutation rates in rapidly adapting asexual populations. Genetics 2016; 204:1249–1266 [CrossRef][PubMed]
    [Google Scholar]
  6. Lenski RE. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J 2017; 11:2181–2194 [CrossRef][PubMed]
    [Google Scholar]
  7. Agashe D. The road not taken: could stress-specific mutations lead to different evolutionary paths?. PLoS Biol 2017; 15:e2002862 [CrossRef][PubMed]
    [Google Scholar]
  8. Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment. Nature 1998; 394:69–72 [CrossRef][PubMed]
    [Google Scholar]
  9. Rosenberg SM. Evolving responsively: adaptive mutation. Nat Rev Genet 2001; 2:504–515 [CrossRef][PubMed]
    [Google Scholar]
  10. Li S-J, Hua Z-S, Huang L-N, Li J, Shi S-H et al. Microbial communities evolve faster in extreme environments. Sci Rep 2014; 4:6205 [CrossRef][PubMed]
    [Google Scholar]
  11. Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV et al. Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 2015; 6:475 [CrossRef][PubMed]
    [Google Scholar]
  12. Denef VJ, Mueller RS, Banfield JF. AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J 2010; 4:599–610 [CrossRef][PubMed]
    [Google Scholar]
  13. Denef VJ, VerBerkmoes NC, Shah MB, Abraham P, Lefsrud M et al. Proteomics-inferred genome typing (PIGT) demonstrates inter-population recombination as a strategy for environmental adaptation. Environ Microbiol 2009; 11:313–325 [CrossRef][PubMed]
    [Google Scholar]
  14. Denef VJ, Kalnejais LH, Mueller RS, Wilmes P, Baker BJ et al. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc Natl Acad Sci USA 2010; 107:2383–2390 [CrossRef][PubMed]
    [Google Scholar]
  15. Denef VJ, Banfield JF. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science 2012; 336:462–466 [CrossRef][PubMed]
    [Google Scholar]
  16. Egal M, Casiot C, Morin G, Elbaz-Poulichet F, Cordier MA et al. An updated insight into the natural attenuation of As concentrations in Reigous Creek (southern France). Appl Geochem 2010; 25:1949–1957 [CrossRef]
    [Google Scholar]
  17. Singer PC, Stumm W. Acidic mine drainage: the rate-determining step. Science 1970; 167:1121–1123 [CrossRef][PubMed]
    [Google Scholar]
  18. Volant A, Bruneel O, Desoeuvre A, Héry M, Casiot C et al. Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and other drivers along an acid mine drainage. FEMS Microbiol Ecol 2014; 90:247–263 [CrossRef][PubMed]
    [Google Scholar]
  19. Bertin PN, Heinrich-Salmeron A, Pelletier E, Goulhen-Chollet F, Arsène-Ploetze F et al. Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 2011; 5:1735–1747 [CrossRef][PubMed]
    [Google Scholar]
  20. Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F. Bacterial metabolism of environmental arsenic-mechanisms and biotechnological applications. Appl Microbiol Biotechnol 2013; 97:3827–3841 [CrossRef]
    [Google Scholar]
  21. Muller D, Médigue C, Koechler S, Barbe V, Barakat M et al. A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 2007; 3:e53 [CrossRef][PubMed]
    [Google Scholar]
  22. Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett MC et al. Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol 2008; 10:228–237 [CrossRef][PubMed]
    [Google Scholar]
  23. Bruneel O, Personné J-C, Casiot C, Leblanc M, Elbaz-Poulichet F et al. Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulès, France). J Appl Microbiol 2003; 95:492–499 [CrossRef][PubMed]
    [Google Scholar]
  24. Arsène-Ploetze F, Koechler S, Marchal M, Coppée J-Y, Chandler M et al. Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 2010; 6:e1000859 [CrossRef][PubMed]
    [Google Scholar]
  25. Battaglia-Brunet F, Joulian C, Garrido F, Dictor M-C, Morin D et al. Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie Van Leeuwenhoek 2006; 89:99–108 [CrossRef][PubMed]
    [Google Scholar]
  26. Bryan CG, Marchal M, Battaglia-Brunet F, Kugler V, Lemaitre-Guillier C et al. Carbon and arsenic metabolism in Thiomonas strains: differences revealed diverse adaptation processes. BMC Microbiol 2009; 9:127 [CrossRef][PubMed]
    [Google Scholar]
  27. Arsène-Ploetze F, Chiboub O, Lièvremont D, Farasin J, Freel KC et al. Adaptation in toxic environments: comparative genomics of loci carrying antibiotic resistance genes derived from acid mine drainage waters. Environ Sci Pollut Res Int 2018; 25:1470–1483 [CrossRef][PubMed]
    [Google Scholar]
  28. Freel KC, Krueger MC, Farasin J, Brochier-Armanet C, Barbe V et al. Adaptation in toxic environments: arsenic genomic islands in the bacterial genus Thiomonas . PLoS One 2015; 10:e0139011 [CrossRef][PubMed]
    [Google Scholar]
  29. Farasin J, Koechler S, Varet H, Deschamps J, Dillies M-A et al. Comparison of biofilm formation and motility processes in arsenic-resistant Thiomonas spp. strains revealed divergent response to arsenite. Microb Biotechnol 2017; 10:789–803 [CrossRef][PubMed]
    [Google Scholar]
  30. Farasin J, Andres J, Casiot C, Barbe V, Faerber J et al. Thiomonas sp. CB2 is able to degrade urea and promote toxic metal precipitation in acid mine drainage waters supplemented with urea. Front Microbiol 2015; 6:993 [CrossRef][PubMed]
    [Google Scholar]
  31. Boles BR, Thoendel M, Singh PK. Self-generated diversity produces "insurance effects" in biofilm communities. Proc Natl Acad Sci USA 2004; 101:16630–16635 [CrossRef][PubMed]
    [Google Scholar]
  32. Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol 2011; 2:158 [CrossRef][PubMed]
    [Google Scholar]
  33. Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 2012; 65:183–195 [CrossRef][PubMed]
    [Google Scholar]
  34. Koechler S, Farasin J, Cleiss-Arnold J, Arsène-Ploetze F. Toxic metal resistance in biofilms: diversity of microbial responses and their evolution. Res Microbiol 2015; 166:764–773 [CrossRef][PubMed]
    [Google Scholar]
  35. Steenackers HP, Parijs I, Dubey A, Foster KR, Vanderleyden J. Experimental evolution in biofilm populations. FEMS Microbiol Rev 2016; 40:373–397 [CrossRef][PubMed]
    [Google Scholar]
  36. Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol 2002; 56:187–209 [CrossRef][PubMed]
    [Google Scholar]
  37. Marchal M, Briandet R, Halter D, Koechler S, DuBow MS et al. Subinhibitory arsenite concentrations lead to population dispersal in Thiomonas sp. PLoS One 2011; 6:e23181 [CrossRef][PubMed]
    [Google Scholar]
  38. Weeger W, Lièvremont D, Perret M, Lagarde F, Hubert JC et al. Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 1999; 12:141–149 [CrossRef][PubMed]
    [Google Scholar]
  39. Vallenet D, Calteau A, Cruveiller S, Gachet M, Lajus A et al. Microscope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes. Nucleic Acids Res 2017; 45:D517–D528 [CrossRef][PubMed]
    [Google Scholar]
  40. Ning Z, Cox AJ, Mullikin JC. SSAHA: a fast search method for large DNA databases. Genome Res 2001; 11:1725–1729 [CrossRef][PubMed]
    [Google Scholar]
  41. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147:195–197 [CrossRef][PubMed]
    [Google Scholar]
  42. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10:R25 [CrossRef][PubMed]
    [Google Scholar]
  43. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 2013; 41:e108 [CrossRef][PubMed]
    [Google Scholar]
  44. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15:550 [CrossRef][PubMed]
    [Google Scholar]
  45. Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720–760 [CrossRef][PubMed]
    [Google Scholar]
  46. Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512–537 [CrossRef][PubMed]
    [Google Scholar]
  47. Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F. Bacterial metabolism of environmental arsenic-mechanisms and biotechnological applications. Appl Microbiol Biotechnol 2013; 97:3827–3841 [CrossRef][PubMed]
    [Google Scholar]
  48. Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett 2002; 133:1–16 [CrossRef][PubMed]
    [Google Scholar]
  49. Driffield K, Miller K, Bostock JM, O'Neill AJ, Chopra I. Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 2008; 61:1053–1056 [CrossRef][PubMed]
    [Google Scholar]
  50. Baharoglu Z, Mazel D. Sos, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 2014; 38:1126–1145 [CrossRef][PubMed]
    [Google Scholar]
  51. Maharjan RP, Ferenci T. A shifting mutational landscape in 6 nutritional states: stress-induced mutagenesis as a series of distinct stress input-mutation output relationships. PLoS Biol 2017; 15:e2001477 [CrossRef][PubMed]
    [Google Scholar]
  52. Maharjan RP, Ferenci T. The impact of growth rate and environmental factors on mutation rates and spectra in Escherichia coli . Environ Microbiol Rep 2018; 10:626–633 [CrossRef][PubMed]
    [Google Scholar]
  53. Churton NWV, Misra RV, Howlin RP, Allan RN, Jefferies J et al. Parallel evolution in Streptococcus pneumoniae biofilms. Genome Biol Evol 2016; 8:1316–1326 [CrossRef][PubMed]
    [Google Scholar]
  54. Esposito A, Pompilio A, Bettua C, Crocetta V, Giacobazzi E et al. Evolution of Stenotrophomonas maltophilia in cystic fibrosis lung over chronic infection: a genomic and phenotypic population study. Front Microbiol 2017; 8:1590 [CrossRef][PubMed]
    [Google Scholar]
  55. Galhardo RS, Do R, Yamada M, Friedberg EC, Hastings PJ et al. DinB upregulation is the sole role of the SOS response in stress-induced mutagenesis in Escherichia coli . Genetics 2009; 182:55–68 [CrossRef][PubMed]
    [Google Scholar]
  56. Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 2016; 536:165–170 [CrossRef][PubMed]
    [Google Scholar]
  57. Allegrucci M, Sauer K. Formation of Streptococcus pneumoniae non-phase-variable colony variants is due to increased mutation frequency present under biofilm growth conditions. J Bacteriol 2008; 190:6330–6339 [CrossRef][PubMed]
    [Google Scholar]
  58. Boles BR, Singh PK. Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci USA 2008; 105:12503–12508 [CrossRef][PubMed]
    [Google Scholar]
  59. van der Veen S, Abee T. Generation of variants in Listeria monocytogenes continuous-flow biofilms is dependent on radical-induced DNA damage and RecA-mediated repair. PLoS One 2011; 6:e28590 [CrossRef][PubMed]
    [Google Scholar]
  60. Casiot C, Morin G, Juillot F, Bruneel O, Personné J-C et al. Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 2003; 37:2929–2936 [CrossRef][PubMed]
    [Google Scholar]
  61. Delavat F, Mitri S, Pelet S, van der Meer JR. Highly variable individual donor cell fates characterize robust horizontal gene transfer of an integrative and conjugative element. Proc Natl Acad Sci USA 2016; 113:E3375–E3383 [CrossRef][PubMed]
    [Google Scholar]
  62. Muller D, Lièvremont D, Simeonova DD, Hubert JC, Lett MC. Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol 2003; 185:135–141 [CrossRef][PubMed]
    [Google Scholar]
  63. Koechler S, Cleiss-Arnold J, Proux C, Sismeiro O, Dillies MA et al. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans . BMC Microbiol 2010; 10:53 [CrossRef][PubMed]
    [Google Scholar]
  64. Shen P, Huang HV. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 1986; 112:441–457[PubMed]
    [Google Scholar]
  65. Bertolla F, Van Gijsegem F, Nesme X, Simonet P. Conditions for natural transformation of Ralstonia solanacearum . Appl Environ Microbiol 1997; 63:4965–4968 [CrossRef][PubMed]
    [Google Scholar]
  66. Khasanov FK, Zvingila DJ, Zainullin AA, Prozorov AA, Bashkirov VI. Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology. Mol Gen Genet 1992; 234:494–497 [CrossRef][PubMed]
    [Google Scholar]
  67. Fornelos N, Browning DF, Butala M. The use and abuse of LexA by mobile genetic elements. Trends Microbiol 2016; 24:391–401 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000447
Loading
/content/journal/mgen/10.1099/mgen.0.000447
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error