1887

Abstract

Wildlife, and birds in particular, play an increasingly recognized role in the evolution and transmission of that pose a threat to humans. To characterize these lineages and their potential threat from an evolutionary perspective, we isolated and performed whole-genome sequencing on 11 sequence types (STs) of recovered from the desiccated faeces of straw-necked ibis () nesting on inland wetlands located in geographically different regions of New South Wales, Australia. Carriage of virulence-associated genes was limited, and no antimicrobial resistance genes were detected, but novel variants of an insertion element that plays an important role in capturing and mobilizing antibiotic resistance genes, IS, were identified and characterized. The isolates belonged to phylogroups B1 and D, including types known to cause disease in humans and animals. Specifically, we found ST58, ST69, ST162, ST212, ST446, ST906, ST2520, ST6096 and ST6241, and a novel phylogroup D strain, ST10208. Notably, the ST58 strain hosted significant virulence gene carriage. The sequences of two plasmids hosting putative virulence-associated factors with incompatibility groups I1 and Y, an extrachromosomal integrative/conjugative element, and a variant of a large phage of the family , were additionally characterized. We identified multiple epidemiologically relevant gene signatures that link the ibis isolates to sequences from international sources, plus novel variants of IS across different sequence types and in different contexts.

Funding
This study was supported by the:
  • Centre for Ecosystem Science, University of New South Wales
    • Principle Award Recipient: Kate J. Brandis
  • Australian Centre for Genomic Epidemiological Microbiology (AusGEM)
    • Principle Award Recipient: Steven P Djordjevic
  • Australian Research Council (Award LP150100912)
    • Principle Award Recipient: Steven P Djordjevic
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000385
2020-06-10
2021-05-07
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/6/mgen000385.html?itemId=/content/journal/mgen/10.1099/mgen.0.000385&mimeType=html&fmt=ahah

References

  1. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L et al. Diversity of the human intestinal microbial flora. Science 2005; 308:1635–1638 [CrossRef][PubMed]
    [Google Scholar]
  2. Jenkins C, Rentenaar R, Landraud L, Brisse S. Enterobacteriaceae; 2017e15621565–1578
  3. Wyrsch ER, Roy Chowdhury P, Chapman TA, Charles IG, Hammond JM et al. Genomic microbial epidemiology is needed to Comprehend the global problem of antibiotic resistance and to improve pathogen diagnosis. Front Microbiol 2016; 7:843 [CrossRef][PubMed]
    [Google Scholar]
  4. Ahmed S, Olsen JE, Herrero-Fresno A. The genetic diversity of commensal Escherichia coli strains isolated from non-antimicrobial treated pigs varies according to age group. PLoS One 2017; 12:e0178623 [CrossRef][PubMed]
    [Google Scholar]
  5. Reid CJ, Wyrsch ER, Roy Chowdhury P, Zingali T, Liu M et al. Porcine commensal Escherichia coli: a reservoir for class 1 integrons associated with IS26. Microb Genom 2017; 3: [CrossRef][PubMed]
    [Google Scholar]
  6. Reid CJ, DeMaere MZ, Djordjevic SP. Australian porcine clonal complex 10 (CC10) Escherichia coli belong to multiple sublineages of a highly diverse global CC10 phylogeny. Microb Genom 2019; 5: [CrossRef][PubMed]
    [Google Scholar]
  7. Pietsch M, Irrgang A, Roschanski N, Brenner Michael G, Hamprecht A et al. Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genomics 2018; 19:601 [CrossRef][PubMed]
    [Google Scholar]
  8. McKinnon J, Roy Chowdhury P, Djordjevic SP. Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis. Int J Antimicrob Agents 2018; 52:430–435 [CrossRef][PubMed]
    [Google Scholar]
  9. Borges CA, Tarlton NJ, Riley LW. Escherichia coli from Commercial Broiler and Backyard Chickens Share Sequence Types, Antimicrobial Resistance Profiles, and Resistance Genes with Human Extraintestinal Pathogenic Escherichia coli. Foodborne Pathog Dis 2019; 16:813–822 [CrossRef][PubMed]
    [Google Scholar]
  10. Sacramento AG, Fernandes MR, Sellera FP, Muñoz ME, Vivas R et al. Genomic analysis of MCR-1 and CTX-M-8 co-producing Escherichia coli ST58 isolated from a polluted mangrove ecosystem in Brazil. J Glob Antimicrob Resist 2018; 15:288–289 [CrossRef][PubMed]
    [Google Scholar]
  11. Ferjani S, Saidani M, Hamzaoui Z, Alonso CA, Torres C et al. Community fecal carriage of broad-spectrum cephalosporin-resistant Escherichia coli in Tunisian children. Diagn Microbiol Infect Dis 2017; 87:188–192 [CrossRef][PubMed]
    [Google Scholar]
  12. Roer L, Hansen F, Thomsen MCF, Knudsen JD, Hansen DS et al. WGS-based surveillance of third-generation cephalosporin-resistant Escherichia coli from bloodstream infections in Denmark. J Antimicrob Chemother 2017; 72:1922–1929 [CrossRef][PubMed]
    [Google Scholar]
  13. Bai X, Zhang J, Ambikan A, Jernberg C, Ehricht R et al. Molecular characterization and comparative genomics of clinical hybrid Shiga toxin-producing and enterotoxigenic Escherichia coli (STEC/ETEC) strains in Sweden. Sci Rep 2019; 9:5619 [CrossRef][PubMed]
    [Google Scholar]
  14. Toval F, Schiller R, Meisen I, Putze J, Kouzel IU et al. Characterization of urinary tract infection-associated Shiga toxin-producing Escherichia coli. Infect Immun 2014; 82:4631–4642 [CrossRef][PubMed]
    [Google Scholar]
  15. Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro surveillance: bulletin Europeen sur les maladies transmissibles=European communicable disease bulletin 2008; 13:
    [Google Scholar]
  16. Wyrsch ER, Hawkey J, Judd LM, Haites R, Holt KE et al. Z/I1 Hybrid Virulence Plasmids Carrying Antimicrobial Resistance genes in S. Typhimurium from Australian Food Animal Production. Microorganisms 2019; 7:E299299 [CrossRef][PubMed]
    [Google Scholar]
  17. Smalla K, Cook K, Djordjevic SP, Klümper U, Gillings M. Environmental dimensions of antibiotic resistance: assessment of basic science gaps. FEMS Microbiol Ecol 2018; 94: [CrossRef][PubMed]
    [Google Scholar]
  18. Cummins ML, Reid CJ, Roy Chowdhury P, Bushell RN, Esbert N et al. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb Genom 2019; 5: [CrossRef][PubMed]
    [Google Scholar]
  19. Vandekerchove D, Vandemaele F, Adriaensen C, Zaleska M, Hernalsteens J-P et al. Virulence-Associated traits in avian Escherichia coli: comparison between isolates from colibacillosis-affected and clinically healthy layer flocks. Vet Microbiol 2005; 108:75–87 [CrossRef][PubMed]
    [Google Scholar]
  20. Guabiraba R, Schouler C. Avian colibacillosis: still many black holes. FEMS Microbiol Lett 2015; 362:fnv118 [CrossRef][PubMed]
    [Google Scholar]
  21. Johnson JR, Delavari P, Kuskowski M, Stell AL. Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. J Infect Dis 2001; 183:78–88 [CrossRef][PubMed]
    [Google Scholar]
  22. Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Fakhr MK et al. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology 2005; 151:2097–2110 [CrossRef][PubMed]
    [Google Scholar]
  23. Dolejska M, Literak I. Wildlife is overlooked in the epidemiology of medically important antibiotic-resistant bacteria. Antimicrob Agents Chemother 2019; 63:e01167–01119 [CrossRef][PubMed]
    [Google Scholar]
  24. Chen J, Griffiths MW. Pcr differentiation of Escherichia coli from other gram-negative bacteria using primers derived from the nucleotide sequences flanking the gene encoding the universal stress protein. Lett Appl Microbiol 1998; 27:369–371 [CrossRef][PubMed]
    [Google Scholar]
  25. Márquez C, Labbate M, Raymondo C, Fernández J, Gestal AM et al. Urinary tract infections in a South American population: dynamic spread of class 1 integrons and multidrug resistance by homologous and site-specific recombination. J Clin Microbiol 2008; 46:3417–3425 [CrossRef][PubMed]
    [Google Scholar]
  26. Harmer CJ, Hall RM. IS26-Mediated formation of transposons carrying antibiotic resistance genes. mSphere 2016; 1: [CrossRef][PubMed]
    [Google Scholar]
  27. Wyrsch ER, Reid CJ, DeMaere MZ, Liu MY, Chapman TA et al. Complete sequences of multiple-drug resistant IncHI2 ST3 plasmids in Escherichia coli of porcine origin in Australia. Front Sustain Food Syst 2019; 3: [CrossRef]
    [Google Scholar]
  28. Wirth T, Falush D, Lan R, Colles F, Mensa P et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 2006; 60:1136–1151 [CrossRef][PubMed]
    [Google Scholar]
  29. Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Rapid SF. and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. Journal of clinical microbiology 2015; 53:2410–2426
    [Google Scholar]
  30. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000; 66:4555–4558 [CrossRef][PubMed]
    [Google Scholar]
  31. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:e000131 [CrossRef][PubMed]
    [Google Scholar]
  32. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:e11147 [CrossRef][PubMed]
    [Google Scholar]
  33. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 2014; 15:524 [CrossRef][PubMed]
    [Google Scholar]
  34. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [CrossRef][PubMed]
    [Google Scholar]
  35. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [CrossRef][PubMed]
    [Google Scholar]
  36. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [CrossRef][PubMed]
    [Google Scholar]
  37. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. Card 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–d525 [CrossRef][PubMed]
    [Google Scholar]
  38. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [CrossRef][PubMed]
    [Google Scholar]
  39. Milne I, Bayer M, Cardle L, Shaw P, Stephen G et al. Tablet--next generation sequence assembly visualization. Bioinformatics 2010; 26:401–402 [CrossRef][PubMed]
    [Google Scholar]
  40. Galata V, Fehlmann T, Backes C, Keller A. PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res 2019; 47:D195–D202 [CrossRef][PubMed]
    [Google Scholar]
  41. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. Blast ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011; 12:402 [CrossRef][PubMed]
    [Google Scholar]
  42. Delmar JA, Su C-C, Yu EW. Bacterial multidrug efflux transporters. Annu Rev Biophys 2014; 43:93–117 [CrossRef][PubMed]
    [Google Scholar]
  43. Paton AW, Woodrow MC, Doyle RM, Lanser JA, Paton JC. Molecular characterization of a Shiga toxigenic Escherichia coli O113:H21 strain lacking eae responsible for a cluster of cases of hemolytic-uremic syndrome. J Clin Microbiol 1999; 37:3357–3361 [CrossRef][PubMed]
    [Google Scholar]
  44. Buts L, Bouckaert J, De Genst E, Loris R, Oscarson S et al. The fimbrial adhesin F17-G of enterotoxigenic Escherichia coli has an immunoglobulin-like lectin domain that binds N-acetylglucosamine. Mol Microbiol 2003; 49:705–715 [CrossRef][PubMed]
    [Google Scholar]
  45. Pitout J, DeVinney R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination [version 1; peer review: 2 approved]. F1000. Research 2017; 6:
    [Google Scholar]
  46. Brandis KJ, Kingsford RT, Ren S, Ramp D. Crisis water management and IBIS breeding at Narran lakes in arid Australia. Environ Manage 2011; 48:489–498 [CrossRef][PubMed]
    [Google Scholar]
  47. Eppinger M, Radnedge L, Andersen G, Vietri N, Severson G et al. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance. PLoS One 2012; 7:e32911 [CrossRef][PubMed]
    [Google Scholar]
  48. Kim MS, Hong SS, Park K, Myung H. Genomic analysis of bacteriophage PBECO4 infecting Escherichia coli O157:H7. Arch Virol 2013; 158:2399–2403 [CrossRef][PubMed]
    [Google Scholar]
  49. Chinnadurai L, Eswaramoorthy T, Paramachandran A, Paul S, Rathy R et al. Draft genome sequence of Escherichia coli phage CMSTMSU, isolated from shrimp farm effluent water. Microbiol Resour Announc 2018; 7: [CrossRef][PubMed]
    [Google Scholar]
  50. Nuccio S-P, Bäumler AJ. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 2007; 71:551–575 [CrossRef][PubMed]
    [Google Scholar]
  51. Pong CH, Harmer CJ, Ataide SF, Hall RM. An IS 26 variant with enhanced activity. FEMS Microbiol Lett 2019; 366: [CrossRef][PubMed]
    [Google Scholar]
  52. Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. mBio 2014; 5:e01801–01814 [CrossRef][PubMed]
    [Google Scholar]
  53. Roy Chowdhury P, McKinnon J, Liu M, Djordjevic SP. Multidrug Resistant Uropathogenic Escherichia coli ST405 With a Novel, Composite IS26 Transposon in a Unique Chromosomal Location. Front Microbiol 2018; 9:3212 [CrossRef][PubMed]
    [Google Scholar]
  54. Chalmers G, Rozas KM, Amachawadi RG, Scott HM, Norman KN et al. Distribution of the pco Gene Cluster and Associated Genetic Determinants among Swine Escherichia coli from a Controlled Feeding Trial. Genes 2018; 9:504 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000385
Loading
/content/journal/mgen/10.1099/mgen.0.000385
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error