1887

Abstract

sequence type 131 (ST131) is a pandemic clone that is evolving rapidly with increasing levels of antimicrobial resistance. Here, we investigated an outbreak of ST131 producing extended spectrum β-lactamases (ESBLs) in a long-term care facility (LTCF) in Ireland by combining data from this LTCF (=69) with other Irish (=35) and global (=690) ST131 genomes to reconstruct the evolutionary history and understand changes in population structure and genome architecture over time. This required a combination of short- and long-read genome sequencing, assembly, read mapping, ESBL gene screening, plasmid alignment and temporal phylogenetics. We found that Clade C was the most prevalent (686 out of 794 isolates, 86 %) of the three major ST131 clades circulating worldwide (A with , B with , C with ), and was associated with the presence of different ESBL alleles, diverse plasmids and transposable elements. Clade C was estimated to have emerged in . 1985 and subsequently acquired different ESBL gene variants ( vs ). An ISEcpmediated transposition of the gene further increased the diversity within Clade C. We discovered a local clonal expansion of a rare C2 lineage (C2_8) with a chromosomal insertion of at the gene. This was acquired from an IncFIA plasmid. The C2_8 lineage clonally expanded in the Irish LTCF from 2006, displacing the existing C1 strain (C1_10), highlighting the potential for novel ESBL-producing ST131 with a distinct genetic profile to cause outbreaks strongly associated with specific healthcare environments.

Funding
This study was supported by the:
  • Sharon J. Peacock , Department of Health (UK) , (Award HICF-T5-342)
  • Derek Pickard , ESPRC Vaccine Hub
  • Arun Gonzales Decano , Dublin City University
  • Sharon J. Peacock , Wellcome Trust , (Award WT098600)
  • Catherine Ludden , Wellcome Trust , (Award 110243/Z/15/Z)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000352
2020-03-26
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/4/mgen000352.html?itemId=/content/journal/mgen/10.1099/mgen.0.000352&mimeType=html&fmt=ahah

References

  1. Tumbarello M, Spanu T, Di Bidino R, Marchetti M, Ruggeri M et al. Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum-beta-lactamase production and inadequate initial antibiotic therapy. Antimicrob Agents Chemother 2010; 54:4085–4091 [CrossRef]
    [Google Scholar]
  2. Burns K, Foley M, Donlon S. Point prevalence survey of hospital acquired infections & antimicrobial use in european acute care hospitals: May 2012 Republic of Ireland National Report. HPSC Ireland, Dublin 2012. https://www.hpsc.ie/a-z/microbiologyantimicrobialresistancemicrobiologyantimicrobialresistance/infectioncontrolandhaiinfectioncontrolandhai/surveillance/hospitalpointprevalencesurveyshospitalpointprevalencesurveys/2012/pps2012reportsforirelandpps2012reportsforireland/File,13788,en.pdf .
  3. Public Health England English Surveillance Programme for Antimicrobial Utilisation and Resistance (ESPAUR) Report 2017. Report: https://webarchive.nationalarchives.gov.uk/20191003132022/https://www.gov.uk/government/publications/english-surveillance-programme-antimicrobial-utilisation-and-resistance-espaur-report .
  4. Gagliotti C, Balode A, Baquero F, Degener J, Grundmann H et al. Escherichia coli and Staphylococcus aureus: bad news and good news from the European Antimicrobial Resistance Surveillance Network (EARS-Net, formerly EARSS), 2002 to 2009. Euro Surveill 2011; 16:19819 [CrossRef]
    [Google Scholar]
  5. Poolman JT, Wacker M. Extraintestinal pathogenic Escherichia coli, a common human pathogen: Challenges for vaccine development and progress in the field. J Infect Dis 2016; 213:6–13 [CrossRef]
    [Google Scholar]
  6. Thaden JT, Fowler VG, Sexton DJ, Anderson DJ. Increasing incidence of extended-spectrum β-lactamase-producing Escherichia coli in community hospitals throughout the southeastern United States. Infect Control Hosp Epidemiol 2016; 37:49–54 [CrossRef]
    [Google Scholar]
  7. European Centre for Disease Prevention and Control Antimicrobial resistance surveillance in Europe 2015. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) Stockholm: ECDC; 2017 https://www.ecdc.europa.eu/sites/default/files/media/en/publications/antimicrobial-resistance-europe-2015.pdf
    [Google Scholar]
  8. Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother 2007; 60:913–920 [CrossRef]
    [Google Scholar]
  9. Rottier WC, Ammerlaan HSM, Bonten MJM. Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum β-lactamase-producing Enterobacteriaceae and patient outcome: a meta-analysis. J Antimicrob Chemother 2012; 67:1311–1320 [CrossRef]
    [Google Scholar]
  10. Roberts RR, Hota B, Ahmad I, Scott RD, Foster SD et al. Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin Infect Dis 2009; 49:1175–1184 [CrossRef]
    [Google Scholar]
  11. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B et al. The epidemic of extended-spectrum-β-Lactamase-producing Escherichia coli ST131 Is driven by a single highly pathogenic subclone, H30-Rx. MBio 2013; 4: [CrossRef]
    [Google Scholar]
  12. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M et al. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A 2014; 111:5694–5699 [CrossRef]
    [Google Scholar]
  13. Johnson JR, Tchesnokova V, Johnston B, Clabots C, Roberts PL et al. Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli . J Infect Dis 2013; 207:919–928 [CrossRef]
    [Google Scholar]
  14. Adams-Sapper S, Diep BA, Perdreau-Remington F, Riley LW. Clonal composition and community clustering of drug-susceptible and -resistant Escherichia coli isolates from bloodstream infections. Antimicrob Agents Chemother 2013; 57:490–497 [CrossRef]
    [Google Scholar]
  15. Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio 2016; 7:e02162 [CrossRef]
    [Google Scholar]
  16. Ben Zakour NL, Alsheikh-Hussain AS, Ashcroft MM, Khanh Nhu NT, Roberts LW et al. Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. mBio 2016; 7:e00347-16 [CrossRef]
    [Google Scholar]
  17. Nicolas-Chanoine M-H, Robert J, Vigan M, Laouénan C, Brisse S et al. Different factors associated with CTX-M-producing ST131 and Non-ST131 Escherichia coli clinical isolates. PLoS One 2013; 8:e72191 [CrossRef]
    [Google Scholar]
  18. Matsumura Y, Pitout JDD, Peirano G, DeVinney R, Noguchi T et al. Rapid identification of different Escherichia coli sequence type 131 clades. Antimicrob Agents Chemother 2017; 61:e00179–00117 [CrossRef]
    [Google Scholar]
  19. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Front Microbiol 2012; 3:110 [CrossRef]
    [Google Scholar]
  20. Kallonen T, Brodrick HJ, Harris SR, Corander J, Brown NM et al. Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Res 2017; 27:1437–1449 [CrossRef]
    [Google Scholar]
  21. Vidal-Navarro L, Pfeiffer C, Bouziges N, Sotto A, Lavigne J-P. Faecal carriage of multidrug-resistant Gram-negative bacilli during a non-outbreak situation in a French university hospital. J Antimicrob Chemother 2010; 65:2455–2458 [CrossRef]
    [Google Scholar]
  22. Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 2011; 66:1–14 [CrossRef]
    [Google Scholar]
  23. Tchesnokova V, Riddell K, Scholes D, Johnson JR, Sokurenko EV. The uropathogenic Escherichia coli subclone sequence type 131- H responsible for most antibiotic prescription errors at an urgent care clinic. Clinical Infectious Diseases 2019; 68:781–787 [CrossRef]
    [Google Scholar]
  24. Ludden C, Cormican M, Vellinga A, Johnson JR, Austin B et al. Colonisation with ESBL-producing and carbapenemase-producing Enterobacteriaceae, vancomycin-resistant enterococci, and meticillin-resistant Staphylococcus aureus in a long-term care facility over one year. BMC Infect Dis 2015; 15:168 [CrossRef]
    [Google Scholar]
  25. Brodrick HJ, Raven KE, Kallonen T, Jamrozy D, Blane B et al. Longitudinal genomic surveillance of multidrug-resistant Escherichia coli carriage in a long-term care facility in the United Kingdom. Genome Med 2017; 9:70 [CrossRef]
    [Google Scholar]
  26. Burgess MJ, Johnson JR, Porter SB, Johnston B, Clabots C et al. Long-term care facilities are reservoirs for antimicrobial-resistant sequence type 131 Escherichia coli . Open Forum Infect Dis 2015; 2:ofv011 [CrossRef]
    [Google Scholar]
  27. Suetens C. Healthcare-associated infections in European long-term care facilities: how big is the challenge?. Euro Surveill 2012; 17:pii=20259 [CrossRef]
    [Google Scholar]
  28. Burke L, Humphreys H, Fitzgerald-Hughes D. The revolving door between hospital and community: extended-spectrum beta-lactamase-producing Escherichia coli in Dublin. J Hosp Infect 2012; 81:192–198 [CrossRef]
    [Google Scholar]
  29. Pelly H, Morris D, O’Connell E, Hanahoe B, Chambers C et al. Outbreak of extended spectrum beta-lactamase producing E. coli in a nursing home in Ireland, May 2006. Weekly releases 2006; 11:3036 [CrossRef]
    [Google Scholar]
  30. Johnson JR, Johnston B, Clabots C, Kuskowski MA, Castanheira M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 2010; 51:286–294 [CrossRef]
    [Google Scholar]
  31. Johnson JR, Porter S, Thuras P, Castanheira M. The pandemic H30 subclone of sequence type 131 (ST131) as the leading cause of multidrug-resistant Escherichia coli infections in the United States (2011-2012). Open Forum Infect Dis 2017; 4:ofx089 [CrossRef]
    [Google Scholar]
  32. Decano AG, Downing T. An Escherichia coli ST131 pangenome atlas reveals population structure and evolution across 4,071 isolates. Sci Rep 2019; 9:17394 [CrossRef]
    [Google Scholar]
  33. Salipante SJ, SenGupta DJ, Cummings LA, Land TA, Hoogestraat DR et al. Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J Clin Microbiol 2015; 53:1072–1079 [CrossRef]
    [Google Scholar]
  34. Rumore J, Tschetter L, Kearney A, Kandar R, McCormick R et al. Evaluation of whole-genome sequencing for outbreak detection of Verotoxigenic Escherichia coli O157:H7 from the Canadian perspective. BMC Genomics 2018; 19:870 [CrossRef]
    [Google Scholar]
  35. Ludden C, Raven KE, Jamrozy D, Gouliouris T, Blane B et al. One health genomic surveillance of Escherichia coli demonstrates distinct lineages and mobile genetic elements in isolates from humans versus livestock. mBio 2019; 10:e02693-18 [CrossRef]
    [Google Scholar]
  36. Hsu L-Y, Harris SR, Chlebowicz MA, Lindsay JA, Koh T-H et al. Evolutionary dynamics of methicillin-resistant Staphylococcus aureus within a healthcare system. Genome Biol 2015; 16:81 [CrossRef]
    [Google Scholar]
  37. Mushtaq S, Woodford N, Potz N, Livermore DM. Detection of CTX-M-15 extended-spectrum beta-lactamase in the United Kingdom. J Antimicrob Chemother 2003; 52:528–529 [CrossRef]
    [Google Scholar]
  38. Livermore DM, Mushtaq S, James D, Potz N, Walker RA et al. In vitro activity of piperacillin/tazobactam and other broad-spectrum antibiotics against bacteria from hospitalised patients in the British Isles. Int J Antimicrob Agents 2003; 22:14–27 [CrossRef]
    [Google Scholar]
  39. Hull RA, Gill RE, Hsu P, Minshew BH, Falkow S. Construction and expression of recombinant plasmids encoding type 1 or D-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect Immun 1981; 33:933–938 [CrossRef]
    [Google Scholar]
  40. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [CrossRef]
    [Google Scholar]
  41. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015; 16:294 [CrossRef]
    [Google Scholar]
  42. Sommer DD, Delcher AL, Salzberg SL, Pop M. Minimus: a fast, lightweight genome assembler. BMC Bioinformatics 2007; 8:64 [CrossRef]
    [Google Scholar]
  43. Gladman S, Seemann T. Victorian Bioinformatics Consortium Velvet Optimiser: for automatically optimising the primary parameter options for the velvet de novo sequence assembler 2008. http://www.vicbioinformatics.com/software.velvetoptimiser.shtml
  44. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [CrossRef]
    [Google Scholar]
  45. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011; 27:578–579 [CrossRef]
    [Google Scholar]
  46. Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol 2012; 13:R56 [CrossRef]
    [Google Scholar]
  47. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef]
    [Google Scholar]
  48. Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 2012; 40:D130–D135 [CrossRef]
    [Google Scholar]
  49. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005; 63:219–228 [CrossRef]
    [Google Scholar]
  50. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [CrossRef]
    [Google Scholar]
  51. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef]
    [Google Scholar]
  52. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [CrossRef]
    [Google Scholar]
  53. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:e11147 [CrossRef]
    [Google Scholar]
  54. Partridge SR, Tsafnat G, Coiera E, Iredell JR. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 2009; 33:757–784 [CrossRef]
    [Google Scholar]
  55. Tsafnat G, Coiera E, Partridge SR, Schaeffer J, Iredell JR. Context-driven discovery of gene cassettes in mobile integrons using a computational grammar. BMC Bioinformatics 2009; 10:281 [CrossRef]
    [Google Scholar]
  56. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef]
    [Google Scholar]
  57. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242W245 [CrossRef]
    [Google Scholar]
  58. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evolution 2016; 2:vew007 [CrossRef]
    [Google Scholar]
  59. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006; 23:254–267 [CrossRef]
    [Google Scholar]
  60. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H et al. Beast 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 2014; 10:e1003537 [CrossRef]
    [Google Scholar]
  61. von Mentzer A, Connor TR, Wieler LH, Semmler T, Iguchi A et al. Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution. Nat Genet 2014; 46:1321–1326 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000352
Loading
/content/journal/mgen/10.1099/mgen.0.000352
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error