1887

Abstract

Rhizobia supply legumes with fixed nitrogen using a set of symbiosis genes. These can cross rhizobium species boundaries, but it is unclear how many other genes show similar mobility. Here, we investigate inter-species introgression using assembly of 196 sv. genomes. The 196 strains constituted a five-species complex, and we calculated introgression scores based on gene-tree traversal to identify 171 genes that frequently cross species boundaries. Rather than relying on the gene order of a single reference strain, we clustered the introgressing genes into four blocks based on population structure-corrected linkage disequilibrium patterns. The two largest blocks comprised 125 genes and included the symbiosis genes, a smaller block contained 43 mainly chromosomal genes, and the last block consisted of three genes with variable genomic location. All introgression events were likely mediated by conjugation, but only the genes in the symbiosis linkage blocks displayed overrepresentation of distinct, high-frequency haplotypes. The three genes in the last block were core genes essential for symbiosis that had, in some cases, been mobilized on symbiosis plasmids. Inter-species introgression is thus not limited to symbiosis genes and plasmids, but other cases are infrequent and show distinct selection signatures.

Funding
This study was supported by the:
  • J. Peter W. Young , Biotechnology and Biological Sciences Research Council , (Award BB/L024209/1)
  • Stig. U. Andersen , Innovationsfonden , (Award 4105-00007A)
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000351
2020-03-16
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/4/mgen000351.html?itemId=/content/journal/mgen/10.1099/mgen.0.000351&mimeType=html&fmt=ahah

References

  1. Hanage WP. Not so simple after all: bacteria, their population genetics, and recombination. Cold Spring Harb Perspect Biol 2016; 8:a018069 [CrossRef]
    [Google Scholar]
  2. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405:299304 [CrossRef]
    [Google Scholar]
  3. Doolittle WF. Lateral genomics. Trends Cell Biol 1999; 9:M5–M8 [CrossRef]
    [Google Scholar]
  4. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [CrossRef]
    [Google Scholar]
  5. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S et al. High throughput ani analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [CrossRef]
    [Google Scholar]
  6. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006; 361:1929–1940 [CrossRef]
    [Google Scholar]
  7. Daubin V, Lerat E, Perrière G. The source of laterally transferred genes in bacterial genomes. Genome Biol 2003; 4:R57 [CrossRef]
    [Google Scholar]
  8. Karlin S, Burge C. Dinucleotide relative abundance extremes: a genomic signature. Trends Genet 1995; 11:283–290 [CrossRef]
    [Google Scholar]
  9. Lerat E, Daubin V, Moran NA. From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-Proteobacteria. PLoS Biol 2003; 1:e19 [CrossRef]
    [Google Scholar]
  10. Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S et al. Horizontal transfer of symbiosis genes within and between rhizobial genera: occurrence and importance. Genes 2018; 9:321 [CrossRef]
    [Google Scholar]
  11. Remigi P, Zhu J, Young JPW, Masson-Boivin C et al. Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 2016; 24:63–75 [CrossRef]
    [Google Scholar]
  12. Rogel MA, Ormeño-Orrillo E, Martinez Romero E, Romero EM. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 2011; 34:96–104 [CrossRef]
    [Google Scholar]
  13. Cervantes L, Bustos P, Girard L, Santamaría RI, Dávila G et al. The conjugative plasmid of a bean-nodulating Sinorhizobium fredii strain is assembled from sequences of two Rhizobium plasmids and the chromosome of a Sinorhizobium strain. BMC Microbiol 2011; 11:149 [CrossRef]
    [Google Scholar]
  14. Haukka K, Lindström K, Young JPW. Three phylogenetic groups of nodA and nifHGenes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 1998; 64:419–426 [CrossRef]
    [Google Scholar]
  15. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P et al. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 2001; 147:981–993 [CrossRef]
    [Google Scholar]
  16. Pérez Carrascal OM, VanInsberghe D, Juárez S, Polz MF, Vinuesa P et al. Population genomics of the symbiotic plasmids of sympatric nitrogen-fixing Rhizobium species associated with Phaseolus vulgaris . Environ Microbiol 2016; 18:2660–2676 [CrossRef]
    [Google Scholar]
  17. Segovia L, Young JP, Martínez-Romero E. Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 1993; 43:374–377 [CrossRef]
    [Google Scholar]
  18. Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD et al. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 2002; 184:3086–3095 [CrossRef]
    [Google Scholar]
  19. Nandasena KG, O'hara GW, Tiwari RP, Howieson JG. Rapid in situ evolution of nodulating strains for Biserrula pelecinus L. through lateral transfer of a symbiosis island from the original mesorhizobial inoculant. Appl Environ Microbiol 2006; 72:7365–7367 [CrossRef]
    [Google Scholar]
  20. Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW et al. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A 1995; 92:8985–8989 [CrossRef]
    [Google Scholar]
  21. Kumar N, Lad G, Giuntini E, Kaye ME, Udomwong P et al. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum . Open Biol 2015; 5:140133 [CrossRef]
    [Google Scholar]
  22. Friesen ML. Widespread fitness alignment in the legume-rhizobium symbiosis. New Phytol 2012; 194:1096–1111 [CrossRef]
    [Google Scholar]
  23. Bailly X, Giuntini E, Sexton MC, Lower RPJ, Harrison PW et al. Population genomics of Sinorhizobium medicae based on low-coverage sequencing of sympatric isolates. ISME J 2011; 5:17221734 [CrossRef]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef]
    [Google Scholar]
  25. Gurevich A, Saveliev V, Vyahhi N, Tesler G et al. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [CrossRef]
    [Google Scholar]
  26. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef]
    [Google Scholar]
  27. Lechner M, Hernandez-Rosales M, Doerr D, Wieseke N, Thévenin A et al. Orthology detection combining clustering and synteny for very large datasets. PLoS One 2014; 9:e105015 [CrossRef]
    [Google Scholar]
  28. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 2011; 7:539 [CrossRef]
    [Google Scholar]
  29. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970; 48:443–453 [CrossRef]
    [Google Scholar]
  30. Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 2006; 7:R34 [CrossRef]
    [Google Scholar]
  31. Sukumaran J, Holder MT. DendroPy: a python library for phylogenetic computing. Bioinformatics 2010; 26:1569–1571 [CrossRef]
    [Google Scholar]
  32. Simonsen M, Pedersen CNS. Rapid computation of distance estimators from nucleotide and amino acid alignments. Proceedings of the 2011 ACM Symposium on Applied Computing ACM; 2011 pp 89–93
    [Google Scholar]
  33. Tarjan R. Depth-First search and linear graph algorithms. SIAM J Comput 1972; 1:146–160 [CrossRef]
    [Google Scholar]
  34. Mangin B, Siberchicot A, Nicolas S, Doligez A, This P et al. Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity 2012; 108:285291 [CrossRef]
    [Google Scholar]
  35. Long Q, Rabanal FA, Meng D, Huber CD, Farlow A et al. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat Genet 2013; 45:884890 [CrossRef]
    [Google Scholar]
  36. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008; 91:4414–4423 [CrossRef]
    [Google Scholar]
  37. Harrison PW, Lower RPJ, Kim NKD, Young JPW et al. Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 2010; 18:141–148 [CrossRef]
    [Google Scholar]
  38. Guillot G, Rousset F. Dismantling the Mantel tests. Methods Ecol Evol 2013; 4:336–344 [CrossRef]
    [Google Scholar]
  39. Chen L, Chen Y, Wood DW, Nester EW. A new type IV secretion system promotes conjugal transfer in Agrobacterium tumefaciens . J Bacteriol 2002; 184:4838–4845 [CrossRef]
    [Google Scholar]
  40. Wetzel ME, Olsen GJ, Chakravartty V, Farrand SK. The repABC plasmids with Quorum-Regulated transfer systems in members of the Rhizobiales divide into two structurally and separately evolving groups. Genome Biol Evol 2015; 7:3337–3357 [CrossRef]
    [Google Scholar]
  41. Azad RK, Lawrence JG. Detecting laterally transferred genes: use of entropic clustering methods and genome position. Nucleic Acids Res 2007; 35:4629–4639 [CrossRef]
    [Google Scholar]
  42. Lawrence JG, Ochman H. Reconciling the many faces of lateral gene transfer. Trends Microbiol 2002; 10:1–4 [CrossRef]
    [Google Scholar]
  43. van Passel MWJ, Bart A, Thygesen HH, Luyf ACM, van Kampen AHC et al. An acquisition account of genomic islands based on genome signature comparisons. BMC Genomics 2005; 6:163 [CrossRef]
    [Google Scholar]
  44. Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL et al. Mantel test in population genetics. Genet Mol Biol 2013; 36:475–485 [CrossRef]
    [Google Scholar]
  45. Harmon LJ, Glor RE. Poor statistical performance of the Mantel test in phylogenetic comparative analyses. Evolution 2010; 64:2173–2178 [CrossRef]
    [Google Scholar]
  46. Rousset F. Partial Mantel tests: reply to Castellano and Balletto. Evolution 2002; 56:1874–1875 [CrossRef]
    [Google Scholar]
  47. Mamidi S, Lee RK, Goos JR, McClean PE. Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max). PLoS One 2014; 9:e107469 [CrossRef]
    [Google Scholar]
  48. Sauvage C, Segura V, Bauchet G, Stevens R, Do PT et al. Genome-Wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol 2014; 165:1120–1132 [CrossRef]
    [Google Scholar]
  49. Epstein B, Branca A, Mudge J, Bharti AK, Briskine R et al. Population genomics of the facultatively mutualistic bacteria Sinorhizobium meliloti and S. medicae. PLoS Genet 2012; 8:e1002868 [CrossRef]
    [Google Scholar]
  50. Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ et al. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci U S A 2012; 109:8629–8634 [CrossRef]
    [Google Scholar]
  51. Shimodaira H, Hasegawa M. Multiple comparisons of Log-Likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999; 16:1114–1116 [CrossRef]
    [Google Scholar]
  52. Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP et al. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci U S A 2001; 98:9883–9888 [CrossRef]
    [Google Scholar]
  53. Galibert F, Finan TM, Long SR, Puhler A, Abola P et al. The composite genome of the legume symbiont Sinorhizobium meliloti . Science 2001; 293:668–672 [CrossRef]
    [Google Scholar]
  54. Schulein R, Dehio C. The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Mol Microbiol 2002; 46:1053–1067 [CrossRef]
    [Google Scholar]
  55. Alt-Mörbe J, Stryker JL, Fuqua C, Li PL, Farrand SK et al. The conjugal transfer system of Agrobacterium tumefaciens octopine-type Ti plasmids is closely related to the transfer system of an IncP plasmid and distantly related to Ti plasmid Vir genes. J Bacteriol 1996; 178:4248–4257 [CrossRef]
    [Google Scholar]
  56. Sullivan JT, Ronson CW. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 1998; 95:5145–5149 [CrossRef]
    [Google Scholar]
  57. Ling J, Wang H, Wu P, Li T, Tang Y et al. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A 2016; 113:13875–13880 [CrossRef]
    [Google Scholar]
  58. Zhao R, Liu LX, Zhang YZ, Jiao J, Cui WJ et al. Adaptive evolution of rhizobial symbiotic compatibility mediated by co-evolved insertion sequences. Isme J 2018; 12:101111 [CrossRef]
    [Google Scholar]
  59. Rosini R, Rinaudo CD, Soriani M, Lauer P, Mora M et al. Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae . Mol Microbiol 2006; 61:126–141 [CrossRef]
    [Google Scholar]
  60. Merkl R. SIGI: score-based identification of genomic islands. BMC Bioinformatics 2004; 5:22 [CrossRef]
    [Google Scholar]
  61. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML et al. Dna sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000; 406:477483 [CrossRef]
    [Google Scholar]
  62. Hirsch PR, Van Montagu M, Johnston AWB, Brewin NJ, Schell J et al. Physical identification of bacteriocinogenic, nodulation and other plasmids in strains of Rhizobium leguminosarm. Microbiology 1980; 120:403–412 [CrossRef]
    [Google Scholar]
  63. Lemaire B, Dlodlo O, Chimphango S, Stirton C, Schrire B et al. Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the core Cape subregion (South Africa). FEMS Microbiol Ecol 2015; 91:1–17 [CrossRef]
    [Google Scholar]
  64. Greenlon A, Chang PL, Damtew ZM, Muleta A, Carrasquilla-Garcia N et al. Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. Proc Natl Acad Sci U S A 2019; 116:15200–15209 [CrossRef]
    [Google Scholar]
  65. Provorov NA, Andronov EE, Onishchuk OP. Forms of natural selection controlling the genomic evolution in nodule bacteria. Russ J Genet 2017; 53:411–419 [CrossRef]
    [Google Scholar]
  66. Silva C, Vinuesa P, Eguiarte LE, Martínez-Romero E, Souza V et al. Rhizobium etli and Rhizobium gallicum nodulate common bean (Phaseolus vulgaris) in a traditionally managed Milpa plot in Mexico: population genetics and biogeographic implications. Appl Environ Microbiol 2003; 69:884–893 [CrossRef]
    [Google Scholar]
  67. Amarger N, Lobreau JP. Quantitative study of nodulation competitiveness in Rhizobium strains. Appl Environ Microbiol 1982; 44:583–588 [CrossRef]
    [Google Scholar]
  68. Bever JD. Dynamics within mutualism and the maintenance of diversity: inference from a model of interguild frequency dependence. Ecol Lett 1999; 2:52–61 [CrossRef]
    [Google Scholar]
  69. Provorov NA, Vorobyov NI. Interplay of Darwinian and frequency-dependent selection in the host-associated microbial populations. Theor Popul Biol 2006; 70:262–272 [CrossRef]
    [Google Scholar]
  70. Provorov NA, Vorobyov NI. Population genetics of rhizobia: construction and analysis of an "Infection and Release" model. J Theor Biol 2000; 205:105–119 [CrossRef]
    [Google Scholar]
  71. Garud NR, Messer PW, Buzbas EO, Petrov DA. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genet 2015; 11:e1005004 [CrossRef]
    [Google Scholar]
  72. Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND et al. Genomic signature of adaptation to climate in Medicago truncatula. Genetics 2014; 196:1263–1275 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000351
Loading
/content/journal/mgen/10.1099/mgen.0.000351
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error