1887

Abstract

is an opportunistic fungal pathogen that at its peak epidemic levels caused an estimated million cases of cryptococcal meningitis per year worldwide. This species can grow in diverse environmental (trees, soil and bird excreta) and host niches (intracellular microenvironments of phagocytes and free-living in host tissues). The genetic basic for adaptation to these different conditions is not well characterized, as most experimental work has relied on a single reference strain of . To identify genes important for yeast infection and disease progression, we profiled the gene expression of seven isolates grown in five representative environmental and conditions. We characterized gene expression differences using RNA-Seq (RNA sequencing), comparing clinical and environmental isolates from two of the major lineages of this species, VNI and VNBI. These comparisons highlighted genes showing lineage-specific expression that are enriched in subtelomeric regions and in lineage-specific gene clusters. By contrast, we find few expression differences between clinical and environmental isolates from the same lineage. Gene expression specific to stages reflects available nutrients and stresses, with an increase in fungal metabolism within macrophages, and an induction of ribosomal and heat-shock gene expression within the subarachnoid space. This study provides the widest view to date of the transcriptome variation of across natural isolates, and provides insights into genes important for and growth stages.

Funding
This study was supported by the:
  • U.S. Public Health Service (Award AI04533)
    • Principle Award Recipient: John R Perfect
  • U.S. Public Health Service (Award AI93257)
    • Principle Award Recipient: John R Perfect
  • U.S. Public Health Service (Award AI73896)
    • Principle Award Recipient: John R Perfect
  • National Human Genome Research Institute (Award U54HG003067)
    • Principle Award Recipient: Not Applicable
  • National Institute of Allergy and Infectious Diseases (Award U19AI110818)
    • Principle Award Recipient: Christina A. Cuomo
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000319
2019-12-20
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/1/mgen000319.html?itemId=/content/journal/mgen/10.1099/mgen.0.000319&mimeType=html&fmt=ahah

References

  1. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG et al. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009; 23:525–530 [View Article]
    [Google Scholar]
  2. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 2017; 17:873–881 [View Article]
    [Google Scholar]
  3. Vanhove M, Beale MA, Rhodes J, Chanda D, Lakhi S et al. Genomic epidemiology of Cryptococcus yeasts identifies adaptation to environmental niches underpinning infection across an African HIV/AIDS cohort. Mol Ecol 2017; 26:1991–2005 [View Article]
    [Google Scholar]
  4. Johnston SA, Voelz K, May RC. Cryptococcus neoformans thermotolerance to avian body temperature is sufficient for extracellular growth but not intracellular survival in macrophages. Sci Rep 2016; 6:20977 [View Article]
    [Google Scholar]
  5. Brown SM, Campbell LT, Lodge JK. Cryptococcus neoformans, a fungus under stress. Curr Opin Microbiol 2007; 10:320–325 [View Article]
    [Google Scholar]
  6. Watkins RA, King JS, Johnston SA. Nutritional requirements and their importance for virulence of pathogenic Cryptococcus species. Microorganisms 2017; 5:65 [View Article]
    [Google Scholar]
  7. Hu G, Cheng P-Y, Sham A, Perfect JR, Kronstad JW. Metabolic adaptation in Cryptococcus neoformans during early murine pulmonary infection. Mol Microbiol 2008; 69:1456–1475 [View Article]
    [Google Scholar]
  8. Kronstad J, Saikia S, Nielson ED, Kretschmer M, Jung W et al. Adaptation of Cryptococcus neoformans to mammalian hosts: integrated regulation of metabolism and virulence. Eukaryot Cell 2012; 11:109–118 [View Article]
    [Google Scholar]
  9. Alanio A, Vernel-Pauillac F, Sturny-Leclère A, Dromer F. Cryptococcus neoformans host adaptation: toward biological evidence of dormancy. mBio 2015; 6:e02580-14 [View Article]
    [Google Scholar]
  10. Derengowski LD, Paes HC, Albuquerque P, Tavares AHFP, Fernandes L et al. The transcriptional response of Cryptococcus neoformans to ingestion by Acanthamoeba castellanii and macrophages provides insights into the evolutionary adaptation to the mammalian host. Eukaryot Cell 2013; 12:761–774 [View Article]
    [Google Scholar]
  11. Fan W, Kraus PR, Boily M-J, Heitman J. Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryot Cell 2005; 4:1420–1433 [View Article]
    [Google Scholar]
  12. Chen Y, Toffaletti DL, Tenor JL, Litvintseva AP, Fang C et al. The Cryptococcus neoformans transcriptome at the site of human meningitis. mBio 2014; 5:e01087-13 [View Article]
    [Google Scholar]
  13. Desjardins CA, Giamberardino C, Sykes SM, Yu C-H, Tenor JL et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans . Genome Res 2017; 27:1207–1219 [View Article]
    [Google Scholar]
  14. Ashton PM, Thanh LT, Trieu PH, Van Anh D, Trinh NM et al. Three phylogenetic groups have driven the recent population expansion of Cryptococcus neoformans . Nat Commun 2019; 10:2035
    [Google Scholar]
  15. Litvintseva AP, Thakur R, Vilgalys R, Mitchell TG. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics 2006; 172:2223–2238 [View Article]
    [Google Scholar]
  16. Rhodes J, Desjardins CA, Sykes SM, Beale MA, Vanhove M et al. Tracing genetic exchange and biogeography of Cryptococcus neoformans var. grubii at the global population level. Genetics 2017; 207:327–346 [View Article]
    [Google Scholar]
  17. Litvintseva AP, Carbone I, Rossouw J, Thakur R, Govender NP et al. Evidence that the human pathogenic fungus Cryptococcus neoformans var. grubii may have evolved in Africa. PLoS One 2011; 6:e19688 [View Article]
    [Google Scholar]
  18. Litvintseva AP, Mitchell TG. Most environmental isolates of Cryptococcus neoformans var. grubii (serotype A) are not lethal for mice. Infect Immun 2009; 77:3188–3195 [View Article]
    [Google Scholar]
  19. Chen J, Varma A, Diaz MR, Litvintseva AP, Wollenberg KK et al. Cryptococcus neoformans strains and infection in apparently immunocompetent patients, China. Emerg Infect Dis 2008; 14:755–762 [View Article]
    [Google Scholar]
  20. Nielsen K, De Obaldia AL, Heitman J. Cryptococcus neoformans mates on pigeon guano: implications for the realized ecological niche and globalization. Eukaryot Cell 2007; 6:949–959 [View Article]
    [Google Scholar]
  21. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011; 17:10–12 [View Article]
    [Google Scholar]
  22. Janbon G, Ormerod KL, Paulet D, Byrnes EJ, Yadav V et al. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet 2014; 10:e1004261 [View Article]
    [Google Scholar]
  23. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al. Star: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29:15–21 [View Article]
    [Google Scholar]
  24. Dobin A, Gingeras TR. Mapping RNA‐seq reads with STAR. Curr Protoc Bioinformatics 2015; 51:51:11.14.1-11.14.19 [View Article]
    [Google Scholar]
  25. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011; 12:323 [View Article]
    [Google Scholar]
  26. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26:139–140 [View Article]
    [Google Scholar]
  27. Basenko E, Pulman J, Shanmugasundram A, Harb O, Crouch K et al. FungiDB: an integrated bioinformatic resource for fungi and oomycetes. J Fungi 2018; 4:39 [View Article]
    [Google Scholar]
  28. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–D462 [View Article]
    [Google Scholar]
  29. Danecek P, Auton A, Abecasis G, Albers CA, Banks E et al. The variant call format and VCFtools. Bioinformatics 2011; 27:2156–2158 [View Article]
    [Google Scholar]
  30. Litvintseva AP, Marra RE, Nielsen K, Heitman J, Vilgalys R et al. Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in sub-Saharan Africa. Eukaryot Cell 2003; 2:1162–1168 [View Article]
    [Google Scholar]
  31. Jung WH, Hu G, Kuo W, Kronstad JW. Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans . Eukaryot Cell 2009; 8:1511–1520 [View Article]
    [Google Scholar]
  32. Hu G, Chen SH, Qiu J, Bennett JE, Myers TG et al. Microevolution during serial mouse passage demonstrates FRE3 as a virulence adaptation gene in Cryptococcus neoformans . mBio 2014; 5:e00941-14 [View Article]
    [Google Scholar]
  33. Yang P, Chen Y, Wu H, Fang W, Liang Q et al. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum . Curr Genet 2018; 64:285–301 [View Article]
    [Google Scholar]
  34. Luberto C, Martinez-Mariño B, Taraskiewicz D, Bolaños B, Chitano P et al. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans . J Clin Invest 2003; 112:1080–1094 [View Article]
    [Google Scholar]
  35. Kumar A, Bachhawat AK. OXP1/YKL215c encodes an ATP-dependent 5-oxoprolinase in Saccharomyces cerevisiae: functional characterization, domain structure and identification of actin-like ATP-binding motifs in eukaryotic 5-oxoprolinases. FEMS Yeast Res 2010; 10:394–401 [View Article]
    [Google Scholar]
  36. Saikia S, Oliveira D, Hu G, Kronstad J. Role of ferric reductases in iron acquisition and virulence in the fungal pathogen Cryptococcus neoformans . Infect Immun 2014; 82:839–850 [View Article]
    [Google Scholar]
  37. Jung WH, Kronstad JW. Iron and fungal pathogenesis: a case study with Cryptococcus neoformans . Cell Microbiol 2008; 10:277–284 [View Article]
    [Google Scholar]
  38. Frazzitta AE, Vora H, Price MS, Tenor JL, Betancourt-Quiroz M et al. Nitrogen source-dependent capsule induction in human-pathogenic Cryptococcus species. Eukaryot Cell 2013; 12:1439–1450 [View Article]
    [Google Scholar]
  39. Upadhya R, Kim H, Jung K-W, Park G, Lam W et al. Sulphiredoxin plays peroxiredoxin-dependent and -independent roles via the HOG signalling pathway in Cryptococcus neoformans and contributes to fungal virulence. Mol Microbiol 2013; 90:630–648 [View Article]
    [Google Scholar]
  40. Park J-N, Lee D-J, Kwon O, Oh D-B, Bahn Y-S et al. Unraveling unique structure and biosynthesis pathway of N-linked glycans in human fungal pathogen Cryptococcus neoformans by glycomics analysis. J Biol Chem 2012; 287:19501–19515 [View Article]
    [Google Scholar]
  41. Lee IR, Yang L, Sebetso G, Allen R, Doan THN et al. Characterization of the complete uric acid degradation pathway in the fungal pathogen Cryptococcus neoformans . PLoS One 2013; 8:e64292 [View Article]
    [Google Scholar]
  42. Marzluf GA. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 1997; 61:17–32
    [Google Scholar]
  43. Lee IR, Morrow CA, Fraser JA. Nitrogen regulation of virulence in clinically prevalent fungal pathogens. FEMS Microbiol Lett 2013; 345:77–84 [View Article]
    [Google Scholar]
  44. Lee IR, Chow EWL, Morrow CA, Djordjevic JT, Fraser JA. Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans . Genetics 2011; 188:309–323 [View Article]
    [Google Scholar]
  45. Homann OR, Cai H, Becker JM, Lindquist SL. Harnessing natural diversity to probe metabolic pathways. PLoS Genet 2005; 1:e80 [View Article]
    [Google Scholar]
  46. Cai H, Hauser M, Naider F, Becker JM. Differential regulation and substrate preferences in two peptide transporters of Saccharomyces cerevisiae . Eukaryot Cell 2007; 6:1805–1813 [View Article]
    [Google Scholar]
  47. Yoo HS, Cooper TG. Sequences of two adjacent genes, one (DAL2) encoding allantoicase and another (DCG1) sensitive to nitrogen-catabolite repression in Saccharomyces cerevisiae . Gene 1991; 104:55–62 [View Article]
    [Google Scholar]
  48. Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G et al. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae . Mol Cell Biol 2007; 27:3065–3086 [View Article]
    [Google Scholar]
  49. Navarathna DHMLP, Harris SD, Roberts DD, Nickerson KW. Evolutionary aspects of urea utilization by fungi. FEMS Yeast Res 2010; 10:209–213 [View Article]
    [Google Scholar]
  50. Navarathna DHMLP, Lionakis MS, Lizak MJ, Munasinghe J, Nickerson KW et al. Urea amidolyase (DUR1,2) contributes to virulence and kidney pathogenesis of Candida albicans . PLoS One 2012; 7:e48475 [View Article]
    [Google Scholar]
  51. Singh A, Panting RJ, Varma A, Saijo T, Waldron KJ et al. Factors required for activation of urease as a virulence determinant in Cryptococcus neoformans . mBio 2013; 4:e00220-13 [View Article]
    [Google Scholar]
  52. Feder V, Kmetzsch L, Staats CC, Vidal-Figueiredo N, Ligabue-Braun R et al. Cryptococcus gattii urease as a virulence factor and the relevance of enzymatic activity in cryptococcosis pathogenesis. FEBS J 2015; 282:1406–1418 [View Article]
    [Google Scholar]
  53. Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y et al. Dynamic regulatory network controlling Th17 cell differentiation. Nature 2013; 496:461–468 [View Article]
    [Google Scholar]
  54. Chitty J, Fraser J. Purine acquisition and synthesis by human fungal pathogens. Microorganisms 2017; 5:33 [View Article]
    [Google Scholar]
  55. Olszewski MA, Noverr MC, Chen G-H, Toews GB, Cox GM et al. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am J Pathol 2004; 164:1761–1771 [View Article]
    [Google Scholar]
  56. Shi M, Li SS, Zheng C, Jones GJ, Kim KS et al. Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. J Clin Invest 2010; 120:1683–1693 [View Article]
    [Google Scholar]
  57. Cox GM, Mukherjee J, Cole GT, Casadevall A, Perfect JR. Urease as a virulence factor in experimental cryptococcosis. Infect Immun 2000; 68:443–448 [View Article]
    [Google Scholar]
  58. Steen BR, Zuyderduyn S, Toffaletti DL, Marra M, Jones SJM et al. Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot Cell 2003; 2:1336–1349 [View Article]
    [Google Scholar]
  59. Perfect JR, Lang SD, Durack DT. Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol 1980; 101:177–194
    [Google Scholar]
  60. D'Souza CA, Alspaugh JA, Yue C, Harashima T, Cox GM et al. Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans . Mol Cell Biol 2001; 21:3179–3191 [View Article]
    [Google Scholar]
  61. Alspaugh JA, Perfect JR, Heitman J. Cryptococcus neoformans mating and virulence are regulated by the G-protein α subunit GPA1 and cAMP. Genes Dev 1997; 11:3206–3217 [View Article]
    [Google Scholar]
  62. Jung K-W, Strain AK, Nielsen K, Jung K-H, Bahn Y-S. Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway. Fungal Genet Biol 2012; 49:332–345 [View Article]
    [Google Scholar]
  63. Homer CM, Summers DK, Goranov AI, Clarke SC, Wiesner DL et al. Intracellular action of a secreted peptide required for fungal virulence. Cell Host Microbe 2016; 19:849–864 [View Article]
    [Google Scholar]
  64. Du Toit A. A fungal quorum-sensing system. Nat Rev Microbiol 2016; 14:404–405 [View Article]
    [Google Scholar]
  65. Squizani ED, Oliveira NK, Reuwsaat JCV, Marques BM, Lopes W et al. Cryptococcal dissemination to the central nervous system requires the vacuolar calcium transporter Pmc1. Cell Microbiol 2018; 20:e12803 [View Article]
    [Google Scholar]
  66. Kmetzsch L, Staats CC, Cupertino JB, Fonseca FL, Rodrigues ML et al. The calcium transporter Pmc1 provides Ca2+ tolerance and influences the progression of murine cryptococcal infection. FEBS J 2013; 280:4853–4864 [View Article]
    [Google Scholar]
  67. Chang YC, Bien CM, Lee H, Espenshade PJ, Kwon-Chung KJ. Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans . Mol Microbiol 2007; 64:614–629 [View Article]
    [Google Scholar]
  68. Chang YC, Ingavale SS, Bien C, Espenshade P, Kwon-Chung KJ. Conservation of the sterol regulatory element-binding protein pathway and its pathobiological importance in Cryptococcus neoformans . Eukaryot Cell 2009; 8:1770–1779 [View Article]
    [Google Scholar]
  69. Lam WC, Gerik KJ, Lodge JK. Role of Cryptococcus neoformans Rho1 GTPases in the PKC1 signaling pathway in response to thermal stress. Eukaryot Cell 2013; 12:118–131 [View Article]
    [Google Scholar]
  70. Bahn Y-S, Jung K-W. Stress signaling pathways for the pathogenicity of Cryptococcus . Eukaryot Cell 2013; 12:1564–1577 [View Article]
    [Google Scholar]
  71. Zhang S, Hacham M, Panepinto J, Hu G, Shin S et al. The Hsp70 member, Ssa1, acts as a DNA-binding transcriptional co-activator of laccase in Cryptococcus neoformans . Mol Microbiol 2006; 62:1090–1101 [View Article]
    [Google Scholar]
  72. Tiwari S, Thakur R, Shankar J. Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int 2015; 2015:132635 [View Article]
    [Google Scholar]
  73. Chatterjee S, Tatu U. Heat shock protein 90 localizes to the surface and augments virulence factors of Cryptococcus neoformans . PLoS Negl Trop Dis 2017; 11:e0005836 [View Article]
    [Google Scholar]
  74. Schumacher RJ, Hansen WJ, Freeman BC, Alnemri E, Litwack G et al. Cooperative action of Hsp70, Hsp90, and DnaJ proteins in protein renaturation. Biochemistry 1996; 35:14889–14898 [View Article]
    [Google Scholar]
  75. Rude TH, Toffaletti DL, Cox GM, Perfect JR. Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans . Infect Immun 2002; 70:5684–5694 [View Article]
    [Google Scholar]
  76. Giles SS, Stajich JE, Nichols C, Gerrald QD, Alspaugh JA et al. The Cryptococcus neoformans catalase gene family and its role in antioxidant defense. Eukaryot Cell 2006; 5:1447–1459 [View Article]
    [Google Scholar]
  77. Giles SS, Perfect JR, Cox GM. Cytochrome c peroxidase contributes to the antioxidant defense of Cryptococcus neoformans . Fungal Genet Biol 2005; 42:20–29 [View Article]
    [Google Scholar]
  78. Liu T-B, Kim J-C, Wang Y, Toffaletti DL, Eugenin E et al. Brain inositol is a novel stimulator for promoting Cryptococcus penetration of the blood-brain barrier. PLoS Pathog 2013; 9:e1003247 [View Article]
    [Google Scholar]
  79. Brown PM, Caradoc-Davies TT, Dickson JMJ, Cooper GJS, Loomes KM et al. Crystal structure of a substrate complex of myo-inositol oxygenase, a di-iron oxygenase with a key role in inositol metabolism. Proc Natl Acad Sci USA 2006; 103:15032–15037 [View Article]
    [Google Scholar]
  80. Mackenzie EA, Klig LS. Computational modeling and in silico analysis of differential regulation of myo-inositol catabolic enzymes in Cryptococcus neoformans . BMC Mol Biol 2008; 9:88 [View Article]
    [Google Scholar]
  81. Mukaremera L, McDonald TR, Nielsen JN, Molenaar CJ, Akampurira A et al. The mouse inhalation model of Cryptococcus neoformans infection recapitulates strain virulence in humans and shows that closely related strains can possess differential virulence. Infect Immun 2019; 87:e00046-19 [View Article]
    [Google Scholar]
  82. Fesel PH, Zuccaro A. β-Glucan: crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol 2016; 90:53–60 [View Article]
    [Google Scholar]
  83. Mouyna I, Hartl L, Latgé J-P. β-1,3-Glucan modifying enzymes in Aspergillus fumigatus . Front Microbiol 2013; 4:81 [View Article]
    [Google Scholar]
  84. Do E, Hu G, Caza M, Kronstad JW, Jung WH. The ZIP family zinc transporters support the virulence of Cryptococcus neoformans . Med Mycol 2016; 54:605–615 [View Article]
    [Google Scholar]
  85. Liu OW, Chun CD, Chow ED, Chen C, Madhani HD et al. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans . Cell 2008; 135:174–188 [View Article]
    [Google Scholar]
  86. Trevijano-Contador N, de Oliveira HC, García-Rodas R, Rossi SA, Llorente I et al. Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLoS Pathog 2018; 14:e1007007 [View Article]
    [Google Scholar]
  87. Tangen KL, Jung WH, Sham AP, Lian T, Kronstad JW. The iron- and cAMP-regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in Cryptococcus neoformans . Microbiology 2007; 153:29–41 [View Article]
    [Google Scholar]
  88. Hommel B, Mukaremera L, Cordero RJB, Coelho C, Desjardins CA et al. Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathog 2018; 14:e1006982 [View Article]
    [Google Scholar]
  89. Kretschmer M, Wang J, Kronstad JW. Peroxisomal and mitochondrial β-oxidation pathways influence the virulence of the pathogenic fungus Cryptococcus neoformans . Eukaryot Cell 2012; 11:1042–1054 [View Article]
    [Google Scholar]
  90. Hicks JK, Bahn Y-S, Heitman J. Pde1 phosphodiesterase modulates cyclic AMP levels through a protein kinase A-mediated negative feedback loop in Cryptococcus neoformans . Eukaryot Cell 2005; 4:1971–1981 [View Article]
    [Google Scholar]
  91. Farrer RA, Ford CB, Rhodes J, Delorey T, May RC et al. Transcriptional heterogeneity of Cryptococcus gattii VGII compared with non-VGII lineages underpins key pathogenicity pathways. mSphere 2018; 3:e00445–18 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000319
Loading
/content/journal/mgen/10.1099/mgen.0.000319
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error