1887

Abstract

The genus is known to be extremely diverse and consists of different phylogenetic groups that show a diversity that is roughly equal to the expected diversity of a typical bacterial genus. One of the most prominent phylogenetic groups within this genus is the group, which contains the understudied species. Before this study, only one strain, DSM 28402, had been described, but without whole-genome analysis. In this study, three strains classified as were isolated from three different carrot juice fermentations and their whole-genome sequence was determined, together with the genome sequence of the type strain. The genomes of all four strains were compared with publicly available group genome sequences. This analysis showed that harboured the second largest genome size and gene count of the whole group. In addition, all members of this species showed the presence of a gene coding for a cellulose-degrading enzyme. Finally, three of the four strains studied showed the presence of pili on scanning electron microscopy (SEM) images, which were linked to conjugative gene regions, coded on a plasmid in at least two of the strains studied.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000286
2019-08-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10.1099/mgen.0.000286/mgen000286.html?itemId=/content/journal/mgen/10.1099/mgen.0.000286&mimeType=html&fmt=ahah

References

  1. Sun Z, Harris HMB, McCann A, Guo C, Argimón S et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 2015;6:8322 [CrossRef]
    [Google Scholar]
  2. Claesson MJ, van Sinderen D, O'Toole PW. Lactobacillus phylogenomics- towards a reclassification of the genus. Int J Syst Evol Microbiol 2008;58:2945–2954 [CrossRef]
    [Google Scholar]
  3. Salvetti E, Torriani S, Felis GE. The genus Lactobacillus: a taxonomic update. Probiotics Antimicrob Proteins 2012;4:217–226 [CrossRef]
    [Google Scholar]
  4. Salvetti E, Harris HMB, Felis GE, O’Toole PW. Comparative genomics reveals robust phylogroups in the genus Lactobacillus as the basis for reclassification. Appl Environ Microb 2018;84:AEM.00993–18
    [Google Scholar]
  5. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 2017;41:S27–S48 [CrossRef]
    [Google Scholar]
  6. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018;36:996–1004 [CrossRef]
    [Google Scholar]
  7. Zheng J, Ruan L, Sun M, Gänzle M. A genomic view of Lactobacilli and Pediococci demonstrates that phylogeny matches ecology and physiology. Appl Environ Microbiol 2015;81:7233–7243 [CrossRef]
    [Google Scholar]
  8. Mao Y, Chen M, Horvath P. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum. Int J Syst Evol Microbiol 2015;65:4682–4688 [CrossRef]
    [Google Scholar]
  9. Miyashita M, Yukphan P, Chaipitakchonlatarn W, Malimas T, Sugimoto M, Tanaka N, Tanasupawat S, Kamakura Y et al. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 2015;65:2485–2490 [CrossRef]
    [Google Scholar]
  10. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus mudanjiangensis sp. nov., Lactobacillus songhuajiangensis sp. nov. and Lactobacillus nenjiangensis sp. nov., isolated from Chinese traditional pickle and sourdough. Int J Syst Evol Microbiol 2013;63:4698–4706 [CrossRef]
    [Google Scholar]
  11. Wuyts S, Van Beeck W, Oerlemans EFM, Wittouck S, Claes IJJ et al. Carrot juice fermentations as man-made microbial ecosystems dominated by lactic acid bacteria. Appl Environ Microbiol 2018;84:e00134-18–18 [CrossRef]
    [Google Scholar]
  12. Lebeer S, Verhoeven TLA, Francius G, Schoofs G, Lambrichts I et al. Identification of a gene cluster for the biosynthesis of a long, Galactose-Rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl Environ Microbiol 2009;75:3554–3563 [CrossRef]
    [Google Scholar]
  13. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci U S A 2009;106:17193–17198 [CrossRef]
    [Google Scholar]
  14. Douillard FP, Ribbera A, Kant R, Pietilä TE, Järvinen HM et al. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet 2013;9:e1003683 [CrossRef]
    [Google Scholar]
  15. Douillard FP, Mora D, Eijlander RT, Wels M, de Vos WM. Comparative genomic analysis of the multispecies probiotic-marketed product VSL#3. PLoS One 2018;13:e0192452 [CrossRef]
    [Google Scholar]
  16. Yu X, Jaatinen A, Rintahaka J, Hynönen U, Lyytinen O et al. Human Gut-Commensalic Lactobacillus ruminis ATCC 25644 displays Sortase-Assembled surface piliation: phenotypic characterization of its fimbrial operon through in silico predictive analysis and recombinant expression in Lactococcus lactis. PLoS One 2015;10:e0145718–0145731 [CrossRef]
    [Google Scholar]
  17. Kant R, Palva A, von Ossowski I, Ossowski von. An in silico pan-genomic probe for the molecular traits behind Lactobacillus ruminis gut autochthony. PLoS One 2017;12:e0175541 [CrossRef]
    [Google Scholar]
  18. Harris HMB, Bourin MJB, Claesson MJ, O'Toole PW. Phylogenomics and comparative genomics of Lactobacillus salivarius, a mammalian gut commensal. Microb Genom 2017;3: [CrossRef]
    [Google Scholar]
  19. Mandlik A, Swierczynski A, Das A, Ton-That H. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 2008;16:33–40 [CrossRef]
    [Google Scholar]
  20. Filloux A. A variety of bacterial pili involved in horizontal gene transfer. J Bacteriol 2010;192:3243–3245 [CrossRef]
    [Google Scholar]
  21. Muschiol S, Balaban M, Normark S, Henriques-Normark B. Uptake of extracellular DNA: competence induced pili in natural transformation of Streptococcus pneumoniae. Bioessays 2015;37:426–435 [CrossRef]
    [Google Scholar]
  22. Guglielmini J, Quintais L, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. The repertoire of ice in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet 2011;7:e1002222 [CrossRef]
    [Google Scholar]
  23. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev 2010;74:434–452 [CrossRef]
    [Google Scholar]
  24. Cury J, Touchon M, Rocha EPC. Integrative and conjugative elements and their hosts: composition, distribution and organization. Nucleic Acids Res 2017;45:8943–8956 [CrossRef]
    [Google Scholar]
  25. Johnson CM, Grossman AD. Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet 2015;49:577–601 [CrossRef]
    [Google Scholar]
  26. Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017;41:512–537 [CrossRef]
    [Google Scholar]
  27. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef]
    [Google Scholar]
  28. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013;29:1072–1075 [CrossRef]
    [Google Scholar]
  29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef]
    [Google Scholar]
  30. Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet] New York: Springer-Verlag; 2009
    [Google Scholar]
  31. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef]
    [Google Scholar]
  32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef]
    [Google Scholar]
  33. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421 [CrossRef]
    [Google Scholar]
  34. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015;16:157 [CrossRef]
    [Google Scholar]
  35. R Core Team R: a Language and Environment for Statistical Computing [Internet] Austria: Vienna; 2015
    [Google Scholar]
  36. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017;33:2938–2940 [CrossRef]
    [Google Scholar]
  37. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 2017;34:2115–2122 [CrossRef]
    [Google Scholar]
  38. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef]
    [Google Scholar]
  39. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017;8:28–36 [CrossRef]
    [Google Scholar]
  40. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Analytical Methods 2016;8:12–24 [CrossRef]
    [Google Scholar]
  41. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. Dna-Dna hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef]
    [Google Scholar]
  42. Yamada KD, Tomii K, Katoh K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics 2016;32:3246–3251 [CrossRef]
    [Google Scholar]
  43. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 2017;45:D200–D203 [CrossRef]
    [Google Scholar]
  44. Wittouck S, Wuyts S, Meehan CJ, van NV, Lebeer S. A genome-based species taxonomy of the Lactobacillus genus complex. bioRxiv 2019;537084:
    [Google Scholar]
  45. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014;42:D490–D495 [CrossRef]
    [Google Scholar]
  46. Yin Y, Mao X, Yang J, Chen X, Mao F et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2012;40:W445–W451 [CrossRef]
    [Google Scholar]
  47. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011;39:W29–W37 [CrossRef]
    [Google Scholar]
  48. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018;46:W95–W101 [CrossRef]
    [Google Scholar]
  49. Abby SS, Cury J, Guglielmini J, Néron B, Touchon M et al. Identification of protein secretion systems in bacterial genomes. Sci Rep 2016;6:23080 [CrossRef]
    [Google Scholar]
  50. Abby SS, Néron B, Ménager H, Touchon M, Rocha EPC. MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS One 2014;9:e110726 [CrossRef]
    [Google Scholar]
  51. Rozov R, Brown Kav A, Bogumil D, Shterzer N, Halperin E et al. Recycler: an algorithm for detecting plasmids from de novo assembly graphs. Bioinformatics 2016;53:btw651
    [Google Scholar]
  52. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A et al. plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics 2016;151:btw493 [CrossRef]
    [Google Scholar]
  53. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016;17:132 [CrossRef]
    [Google Scholar]
  54. Galata V, Fehlmann T, Backes C, Keller A. PLSDB: a resource of complete bacterial plasmids. Nucleic Acids Res 2019;47:D195–202 [CrossRef]
    [Google Scholar]
  55. De Bruyne K, Camu N, De Vuyst L, Vandamme P. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations. Int J Syst Evol Microbiol 2009;59:7–12 [CrossRef]
    [Google Scholar]
  56. Curk MC, Hubert JC, Bringel F. Lactobacillus paraplantarum sp. now., a new species related to Lactobacillus plantarum. Int J Syst Bacteriol 1996;46:595–598 [CrossRef]
    [Google Scholar]
  57. Zanoni P, Farrow JAE, Phillips BA, Collins MD, pentosus L. Lactobacillus pentosus (Fred, Peterson, and anderson) sp. nov., nom. rev. Int J Syst Bacteriol 1987;37:339–341 [CrossRef]
    [Google Scholar]
  58. Pederson CS. A study of the species Lactobacillus plantarum (Orla-Jensen) Bergey, et al. Journal of bacteriology 1936;31:217
    [Google Scholar]
  59. Gu CT, Wang F, Li CY, Liu F, Huo GC et al. Lactobacillus xiangfangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2012;62:860–863 [CrossRef]
    [Google Scholar]
  60. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012;28:1647–1649 [CrossRef]
    [Google Scholar]
  61. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106:19126–19131 [CrossRef]
    [Google Scholar]
  62. Yennamalli RM, Rader AJ, Kenny AJ, Wolt JD, Sen TZ. Endoglucanases: insights into thermostability for biofuel applications. Biotechnol Biofuels 2013;6:136 [CrossRef]
    [Google Scholar]
  63. Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 2012;12:186 [CrossRef]
    [Google Scholar]
  64. Guglielmini J, Néron B, Abby SS, Garcillán-Barcia MP, de la Cruz F, la Cruz Fde et al. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res 2014;42:5715–5727 [CrossRef]
    [Google Scholar]
  65. Zupan J, Hackworth CA, Aguilar J, Ward D, Zambryski P. VirB1* promotes T-Pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. J Bacteriol 2007;189:6551–6563 [CrossRef]
    [Google Scholar]
  66. Schröder G, Lanka E. The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid 2005;54:1–25 [CrossRef]
    [Google Scholar]
  67. Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 2009;73:775–808 [CrossRef]
    [Google Scholar]
  68. Shariq M, Kumar N, Kumari R, Kumar A, Subbarao N et al. Biochemical analysis of cage: a VirB4 homologue of Helicobacter pylori Cag-T4SS. PLoS One 2015;10:e0142606 [CrossRef]
    [Google Scholar]
  69. Klemm D, Heublein B, Fink H-P, Bohn A. Cellulose: fascinating biopolymer and sustainable RAW material. Angewandte Chemie International Edition 2005;44:3358–3393 [CrossRef]
    [Google Scholar]
  70. Sharma KD, Karki S, Thakur NS, Attri S. Chemical composition, functional properties and processing of carrot-a review. J Food Sci Technol 2012;49:22–32 [CrossRef]
    [Google Scholar]
  71. Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 2014;32:1216–1236 [CrossRef]
    [Google Scholar]
  72. Rossi F, Rudella A, Marzotto M, Dellaglio F. Vector-free cloning of a bacterial endo-1,4-beta-glucanase in Lactobacillus plantarum and its effect on the acidifying activity in silage: use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie van Leeuwenhoek 2001;80:139–147 [CrossRef]
    [Google Scholar]
  73. Moraïs S, Shterzer N, Grinberg IR, Mathiesen G, Eijsink VGH et al. Establishment of a simple Lactobacillus plantarum cell Consortium for cellulase-xylanase synergistic interactions. Appl Environ Microbiol 2013;79:5242–5249 [CrossRef]
    [Google Scholar]
  74. Moraïs S, Shterzer N, Lamed R, Bayer EA, Mizrahi I. A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells. Biotechnol Biofuels 2014;7:112–115 [CrossRef]
    [Google Scholar]
  75. Stern J, Moraïs S, Ben-David Y, Salama R, Shamshoum M et al. Assembly of synthetic functional cellulosomal structures onto the cell surface of Lactobacillus plantarum, a potent member of the gut microbiome. Appl Environ Microbiol 2018;84:1–14 [CrossRef]
    [Google Scholar]
  76. Okano K, Zhang Q, Yoshida S, Tanaka T, Ogino C et al. D-Lactic acid production from cellooligosaccharides and beta-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 2010;85:643–650 [CrossRef]
    [Google Scholar]
  77. Bates EE, Gilbert HJ, Hazlewood GP, Huckle J, Laurie JI et al. Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Appl Environ Microbiol 1989;55:2095–2097
    [Google Scholar]
  78. Scheirlinck T, Mahillon J, Joos H, Dhaese P, Michiels F. Integration and expression of alpha-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl Environ Microbiol 1989;55:2130–2137
    [Google Scholar]
  79. Fukao M, Oshima K, Morita H, Toh H, Suda W et al. Genomic analysis by deep sequencing of the probiotic Lactobacillus brevis KB290 harboring nine plasmids reveals genomic stability. PLoS One 2013;8:e60521 [CrossRef]
    [Google Scholar]
  80. Zhang W, Yu D, Sun Z, Chen X, Bao Q et al. Complete nucleotide sequence of plasmid plca36 isolated from Lactobacillus casei Zhang. Plasmid 2008;60:131–135 [CrossRef]
    [Google Scholar]
  81. Ito Y, Kawai Y, Arakawa K, Honme Y, Sasaki T et al. Conjugative plasmid from Lactobacillus gasseri LA39 that carries genes for production of and immunity to the circular bacteriocin gassericin a. Appl Environ Microbiol 2009;75:6340–6351 [CrossRef]
    [Google Scholar]
  82. Tanizawa Y, Tohno M, Kaminuma E, Nakamura Y, Arita M. Complete genome sequence and analysis of Lactobacillus hokkaidonensis LOOC260T, a psychrotrophic lactic acid bacterium isolated from silage. BMC Genomics 2015;16:1–11 [CrossRef]
    [Google Scholar]
  83. van Kranenburg R, Golic N, Bongers R, Leer RJ, de Vos WM et al. Functional analysis of three plasmids from Lactobacillus plantarum. Appl Environ Microbiol 2005;71:1223–1230 [CrossRef]
    [Google Scholar]
  84. Kim D-H, Jeon Y-J, Chung M-J, Seo J-G, Ro Y-T. Complete sequence and gene analysis of a cryptic plasmid pLU4 in Lactobacillus reuteri strain LU4 (KCTC 12397BP). Appl Biol Chem 2017;60:145–153 [CrossRef]
    [Google Scholar]
  85. Jung JY, Lee SH, Jeon CO. Complete genome sequence of Leuconostoc carnosum strain JB16, isolated from kimchi. J Bacteriol 2012;194:6672–6673 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000286
Loading
/content/journal/mgen/10.1099/mgen.0.000286
Loading

Data & Media loading...

Supplementary material 1

Supplementary material 1

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error