1887

Abstract

The UK’s native oak is under serious threat from Acute Oak Decline (AOD). Stem tissue necrosis is a primary symptom of AOD and several bacteria are associated with necrotic lesions. Two members of the lesion pathobiome, Brenneria goodwinii and Gibbsiella quercinecans , have been identified as causative agents of tissue necrosis. However, additional bacteria including Lonsdalea britannica and Rahnella species have been detected in the lesion microbiome, but their role in tissue degradation is unclear. Consequently, information on potential genome-encoded mechanisms for tissue necrosis is critical to understand the role and mechanisms used by bacterial members of the lesion pathobiome in the aetiology of AOD. Here, the whole genomes of bacteria isolated from AOD-affected trees were sequenced, annotated and compared against canonical bacterial phytopathogens and non-pathogenic symbionts. Using orthologous gene inference methods, shared virulence genes that retain the same function were identified. Furthermore, functional annotation of phytopathogenic virulence genes demonstrated that all studied members of the AOD lesion microbiota possessed genes associated with phytopathogens. However, the genome of B. goodwinii was the most characteristic of a necrogenic phytopathogen, corroborating previous pathological and metatranscriptomic studies that implicate it as the key causal agent of AOD lesions. Furthermore, we investigated the genome sequences of other AOD lesion microbiota to understand the potential ability of microbes to cause disease or contribute to pathogenic potential of organisms isolated from this complex pathobiome. The role of these members remains uncertain but some such as G. quercinecans may contribute to tissue necrosis through the release of necrotizing enzymes and may help more dangerous pathogens activate and realize their pathogenic potential or they may contribute as secondary/opportunistic pathogens with the potential to act as accessory species for B. goodwinii . We demonstrate that in combination with ecological data, whole genome sequencing provides key insights into the pathogenic potential of bacterial species whether they be phytopathogens, part-contributors or stimulators of the pathobiome.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000240
2019-01-08
2019-08-24
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/1/mgen000240.html?itemId=/content/journal/mgen/10.1099/mgen.0.000240&mimeType=html&fmt=ahah

References

  1. Denman S, Brown N, Kirk S, Jeger M, Webber J. A description of the symptoms of Acute Oak Decline in Britain and a comparative review on causes of similar disorders on oak in Europe. Forestry 2014;87:535–551 [CrossRef]
    [Google Scholar]
  2. Brown N, Jeger M, Kirk S, Xu X, Denman S. Spatial and temporal patterns in symptom expression within eight woodlands affected by Acute Oak Decline. For Ecol Manage 2016;360:97–109 [CrossRef]
    [Google Scholar]
  3. Denman S, Doonan J, Ransom-Jones E, Broberg M, Plummer S et al. Microbiome and infectivity studies reveal complex polyspecies tree disease in Acute Oak Decline. ISME J 2018;12:386–399 [CrossRef][PubMed]
    [Google Scholar]
  4. Manion P. Tree Disease Concepts Englewood Cliffs, NJ: Prentice Hall; 1981
    [Google Scholar]
  5. Brady C, Denman S, Kirk S, Venter S, Rodríguez-Palenzuela P et al. Description of Gibbsiella quercinecans gen. nov., sp. nov., associated with Acute Oak Decline. Syst Appl Microbiol 2010;33:444–450 [CrossRef][PubMed]
    [Google Scholar]
  6. Denman S, Brady C, Kirk S, Cleenwerck I, Venter S et al. Brenneria goodwinii sp. nov., associated with Acute Oak Decline in the UK. Int J Syst Evol Microbiol 2012;62:2451–2456 [CrossRef][PubMed]
    [Google Scholar]
  7. Broberg M, Doonan J, Mundt F, Denman S, Mcdonald JE. Integrated multi-omic analysis of host-microbiota interactions in Acute Oak Decline. Microbiome 2018;6:21 [CrossRef][PubMed]
    [Google Scholar]
  8. Loman NJ, Pallen MJ. Twenty years of bacterial genome sequencing. Nat Rev Microbiol 2015;13:787–794 [CrossRef][PubMed]
    [Google Scholar]
  9. Xu J, Zheng HJ, Liu L, Pan ZC, Prior P et al. Complete genome sequence of the plant pathogen Ralstonia solanacearum strain Po82. J Bacteriol 2011;193:4261–4262 [CrossRef][PubMed]
    [Google Scholar]
  10. Byrd AL, Segre JA. Adapting Koch's postulates. Science 2016;351:224–226 [CrossRef]
    [Google Scholar]
  11. Pallen MJ. Microbial bioinformatics 2020. Microb Biotechnol 2016;9:681–686 [CrossRef][PubMed]
    [Google Scholar]
  12. Croucher NJ, Didelot X. The application of genomics to tracing bacterial pathogen transmission. Curr Opin Microbiol 2015;23:62–67 [CrossRef][PubMed]
    [Google Scholar]
  13. Rohde H, Qin J, Cui Y, Li D, Loman N et al. Open-source genomic analysis of Shiga-Toxin–producing. N Engl J Med 2011;365:718–724
    [Google Scholar]
  14. Barbosa E, Röttger R, Hauschild AC, Azevedo V, Baumbach J. On the limits of computational functional genomics for bacterial lifestyle prediction. Brief Funct Genomics 2014;13:398–408 [CrossRef][PubMed]
    [Google Scholar]
  15. Toth IK, Pritchard L, Birch PR. Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu Rev Phytopathol 2006;44:305–336 [CrossRef][PubMed]
    [Google Scholar]
  16. Vinatzer BA, Monteil CL, Clarke CR. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. Annu Rev Phytopathol 2014;52:19–43 [CrossRef][PubMed]
    [Google Scholar]
  17. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O. PathogenFinder-distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 2013;8:e77302 [CrossRef][PubMed]
    [Google Scholar]
  18. Martínez-García PM, López-Solanilla E, Ramos C, Rodríguez-Palenzuela P. Prediction of bacterial associations with plants using a supervised machine-learning approach. Environ Microbiol 2016;18:4847–4861 [CrossRef][PubMed]
    [Google Scholar]
  19. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 2005;43:205–227 [CrossRef][PubMed]
    [Google Scholar]
  20. Toth IK, Bell KS, Holeva MC, Birch PR. Soft rot erwiniae: from genes to genomes. Mol Plant Pathol 2003;4:17–30 [CrossRef][PubMed]
    [Google Scholar]
  21. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012;13:614–629 [CrossRef][PubMed]
    [Google Scholar]
  22. Perez-Brocal V, Latorre A, Moya A. Symbionts and pathogens: what is the difference?. In Dobrindt U, Hacker JH, Svanborg C. (editors) Between Pathogenicity and Commensalism Berlin, Heidelberg: Springer; 2013; pp.215–243
    [Google Scholar]
  23. Ochman H, Davalos LM. The nature and dynamics of bacterial genomes. Science 2006;311:1730–1733 [CrossRef][PubMed]
    [Google Scholar]
  24. Pallen MJ, Wren BW. Bacterial pathogenomics. Nature 2007;449:835–842 [CrossRef][PubMed]
    [Google Scholar]
  25. Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A et al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 2012;25:28–36 [CrossRef][PubMed]
    [Google Scholar]
  26. van Overbeek LS, Saikkonen K. Impact of bacterial-fungal interactions on the colonization of the endosphere. Trends Plant Sci 2016;21:230–242 [CrossRef][PubMed]
    [Google Scholar]
  27. Turner SM, Chaudhuri RR, Jiang ZD, Dupont H, Gyles C et al. Phylogenetic comparisons reveal multiple acquisitions of the toxin genes by enterotoxigenic Escherichia coli strains of different evolutionary lineages. J Clin Microbiol 2006;44:4528–4536 [CrossRef][PubMed]
    [Google Scholar]
  28. Burts ML, Williams WA, Debord K, Missiakas DM. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci USA 2005;102:1169–1174 [CrossRef][PubMed]
    [Google Scholar]
  29. Condemine G, Ghazi A. Differential regulation of two oligogalacturonate outer membrane channels, KdgN and KdgM, of Dickeya dadantii (Erwinia chrysanthemi). J Bacteriol 2007;189:5955–5962 [CrossRef][PubMed]
    [Google Scholar]
  30. Casadevall A. The Pathogenic Potential of a Microbe. mSphere 2017;2:e0001500017 [CrossRef][PubMed]
    [Google Scholar]
  31. Koch R. Ueber den augenblicklichen Stand der bakteriologischen Choleradiagnose [About the instantaneous state of the bacteriological diagnosis of cholera]. Zeitschrift für Hyg und Infekt 1893;14:319–338
    [Google Scholar]
  32. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 2016;535:94–103 [CrossRef][PubMed]
    [Google Scholar]
  33. Vacher C, Hampe A, Porté AJ, Sauer U, Compant S et al. The Phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst 2016;47:1–24 [CrossRef]
    [Google Scholar]
  34. Brady CL, Cleenwerck I, Denman S, Venter SN, Rodríguez-Palenzuela P et al. Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben, et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica sp. nov. and Lonsdalea populi sp. nov. Int J Syst Evol Microbiol2012:1592–1602
    [Google Scholar]
  35. Brady C, Hunter G, Kirk S, Arnold D, Denman S. Rahnella victoriana sp. nov., Rahnella bruchi sp. nov., Rahnella woolbedingensis sp. nov., classification of Rahnella genomospecies 2 and 3 as Rahnella variigena sp. nov. and Rahnella inusitata sp. nov., respectively and emended description of the genus Rahnella. Syst Appl Microbiol 2014;37:545–552 [CrossRef][PubMed]
    [Google Scholar]
  36. Surico G, Mugnai L, Pastorelli R, Giovannetti L, Stead DE. Erwinia alni, a new species causing Bark Cankers of Alder (Alnus Miller) Species. Int J Syst Bacteriol 1996;46:720–726 [CrossRef]
    [Google Scholar]
  37. Maes M, Huvenne H, Messens E. Brenneria salicis, the bacterium causing watermark disease in willow, resides as an endophyte in wood. Environ Microbiol 2009;11:1453–1462 [CrossRef][PubMed]
    [Google Scholar]
  38. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011;17:10–12 [CrossRef]
    [Google Scholar]
  39. Joshi N, Fass J. Sickle. A sliding-window, adaptive, quality-based trimming tool for FastQ files.
  40. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  41. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–569 [CrossRef][PubMed]
    [Google Scholar]
  42. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  43. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015;16:157 [CrossRef][PubMed]
    [Google Scholar]
  44. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis - 10 years on. Nucleic Acids Res 2016;44:D694–D697
    [Google Scholar]
  45. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015;12:59–60 [CrossRef][PubMed]
    [Google Scholar]
  46. Csárdi G, Nepusz T. The igraph software package for complex network research. InterJournal Complex Syst 2006;1695:1–9
    [Google Scholar]
  47. Wickham H. Ggplot2: Elegant Graphics for Data Analysis New York: Springer-Verlag; 2009
    [Google Scholar]
  48. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 2013;6:41 [CrossRef][PubMed]
    [Google Scholar]
  49. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016;66:5575–5599 [CrossRef][PubMed]
    [Google Scholar]
  50. Casadevall A, Fang FC, Pirofski LA. Microbial virulence as an emergent property: consequences and opportunities. PLoS Pathog 2011;7:1–3 [CrossRef][PubMed]
    [Google Scholar]
  51. Kamada T, Kawai S. An algorithm for drawing general undirected graphs. Inf Process Lett 1989;31:7–15 [CrossRef]
    [Google Scholar]
  52. Piromyou P, Songwattana P, Greetatorn T, Okubo T, Kakizaki KC et al. The Type III Secretion System (T3SS) is a determinant for Rice-Endophyte Colonization by Non-Photosynthetic Bradyrhizobium. Microbes Environ 2015;30:291–300 [CrossRef][PubMed]
    [Google Scholar]
  53. Peeters N, Guidot A, Vailleau F, Valls M. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol 2013;14:651–662 [CrossRef][PubMed]
    [Google Scholar]
  54. Jacobs JM, Milling A, Mitra RM, Hogan CS, Ailloud F et al. Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and to overcome salicylic acid-mediated defenses during tomato pathogenesis. MBio 2013;4:e0087513 [CrossRef][PubMed]
    [Google Scholar]
  55. Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E et al. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics 2010;11:379 [CrossRef][PubMed]
    [Google Scholar]
  56. Marchetti M, Capela D, Glew M, Cruveiller S, Chane-Woon-Ming B et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol 2010;8:e1000280 [CrossRef][PubMed]
    [Google Scholar]
  57. Williams KP, Gillespie JJ, Sobral BW, Nordberg EK, Snyder EE et al. Phylogeny of gammaproteobacteria. J Bacteriol 2010;192:2305–2314 [CrossRef][PubMed]
    [Google Scholar]
  58. Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 2006;103:8888–8893 [CrossRef][PubMed]
    [Google Scholar]
  59. Tampakaki AP, Skandalis N, Gazi AD, Bastaki MN, Sarris PF et al. Playing the "Harp": evolution of our understanding of hrp/hrc genes. Annu Rev Phytopathol 2010;48:347–370 [CrossRef][PubMed]
    [Google Scholar]
  60. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 2015;13:343–359 [CrossRef][PubMed]
    [Google Scholar]
  61. Choi MS, Kim W, Lee C, Oh CS. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Mol Plant Microbe Interact 2013;26:1115–1122 [CrossRef][PubMed]
    [Google Scholar]
  62. Sinn JP, Oh CS, Jensen PJ, Carpenter SC, Beer SV et al. The C-terminal half of the HrpN virulence protein of the fire blight pathogen Erwinia amylovora is essential for its secretion and for its virulence and avirulence activities. Mol Plant Microbe Interact 2008;21:1387–1397 [CrossRef][PubMed]
    [Google Scholar]
  63. Charkowski AO, Alfano JR, Preston G, Yuan J, He SY et al. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol 1998;180:5211–5217[PubMed]
    [Google Scholar]
  64. Geider K, Gernold M, Jock S, Wensing A, Völksch B et al. Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion. Microbiol Res 2015;181:93–104 [CrossRef][PubMed]
    [Google Scholar]
  65. Toth IK, Birch PR. Rotting softly and stealthily. Curr Opin Plant Biol 2005;8:424–429 [CrossRef][PubMed]
    [Google Scholar]
  66. Passos da Silva D, Castañeda-Ojeda MP, Moretti C, Buonaurio R, Ramos C et al. Bacterial multispecies studies and microbiome analysis of a plant disease. Microbiology 2014;160:556–566 [CrossRef]
    [Google Scholar]
  67. Buonaurio R, Moretti C, da Silva DP, Cortese C, Ramos C et al. The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Front Plant Sci 2015;6:1–12 [CrossRef]
    [Google Scholar]
  68. Deakin WJ, Broughton WJ. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 2009;7:312–320 [CrossRef][PubMed]
    [Google Scholar]
  69. Frank AC. The Genomes of Endophytic Bacteria. In Endophytes of Forest Trees: Biology and Applications Berlin/Heidelberg, Germany: Springer Science; pp.107–136
    [Google Scholar]
  70. Viprey V, del Greco A, Golinowski W, Broughton WJ, Perret X. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 1998;28:1381–1389 [CrossRef][PubMed]
    [Google Scholar]
  71. Schmidt MA, Balsanelli E, Faoro H, Cruz LM, Wassem R et al. The type III secretion system is necessary for the development of a pathogenic and endophytic interaction between Herbaspirillum rubrisubalbicans and Poaceae. BMC Microbiol 2012;12:98 [CrossRef][PubMed]
    [Google Scholar]
  72. Vázquez-Rosas-Landa M, Ponce-Soto GY, Eguiarte LE, Souza V. Comparative genomics of free-living Gammaproteobacteria: pathogenesis-related genes or interaction-related genes?. Pathog Dis 2017;75:ftx059 [CrossRef][PubMed]
    [Google Scholar]
  73. Pitlik SD, Koren O. How holobionts get sick-toward a unifying scheme of disease. Microbiome 2017;5:64 [CrossRef][PubMed]
    [Google Scholar]
  74. Brader G, Compant S, Vescio K, Mitter B, Trognitz F et al. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 2017;55:61–83 [CrossRef][PubMed]
    [Google Scholar]
  75. Huang YY, Cho ST, Lo WS, Wang YC, Lai EM et al. Complete genome sequence of agrobacterium tumefaciens ach5. Genome Announc 2015;3:e0057015 [CrossRef][PubMed]
    [Google Scholar]
  76. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ et al. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 2004;5:r77 [CrossRef][PubMed]
    [Google Scholar]
  77. Glasner JD, Yang CH, Reverchon S, Hugouvieux-Cotte-Pattat N, Condemine G et al. Genome sequence of the plant-pathogenic bacterium Dickeya dadantii 3937. J Bacteriol 2011;193:2076–2077 [CrossRef][PubMed]
    [Google Scholar]
  78. Smits TH, Rezzonico F, Kamber T, Blom J, Goesmann A et al. Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant Microbe Interact 2010;23:384–393 [CrossRef][PubMed]
    [Google Scholar]
  79. Kube M, Migdoll AM, Gehring I, Heitmann K, Mayer Y et al. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genomics 2010;11:393 [CrossRef][PubMed]
    [Google Scholar]
  80. Giongo A, Tyler HL, Zipperer UN, Triplett EW. Two genome sequences of the same bacterial strain, Gluconacetobacter diazotrophicus PAl 5, suggest a new standard in genome sequence submission. Stand Genomic Sci 2010;2:309–317 [CrossRef][PubMed]
    [Google Scholar]
  81. Marinho Almeida D, Dini-Andreote F, Camargo Neves AA, Jucá Ramos RT, Andreote FD et al. Draft genome sequence of Methylobacterium mesophilicum strain SR1.6/6, isolated from Citrus sinensis. Genome Announc 2013;1:e0035613 [CrossRef][PubMed]
    [Google Scholar]
  82. Loper JE. Lack of evidence for in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surfaces. Phytopathology 1987;77:1449–1454 [CrossRef]
    [Google Scholar]
  83. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S et al. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 2002;415:497–502 [CrossRef][PubMed]
    [Google Scholar]
  84. Reeve W, O'Hara G, Chain P, Ardley J, Bräu L et al. Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM1325, an effective microsymbiont of annual Mediterranean clovers. Stand Genomic Sci 2010;2:347–356 [CrossRef][PubMed]
    [Google Scholar]
  85. Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 2006;7:R34 [CrossRef][PubMed]
    [Google Scholar]
  86. Desai D, Li JH, van Zijll de Jong E, Braun R, Pitman A et al. Draft genome sequences of two new zealand Xanthomonas campestris pv. campestris Isolates, ICMP 4013 and ICMP 21080. Genome Announc 2015;3:e0124715 [CrossRef][PubMed]
    [Google Scholar]
  87. Ochiai H, Inoue Y, Takeya M, Sasaki A, Kaku H. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its Race Diversity. Japan Agricultural Research Quarterly: JARQ 2005;39:275–287 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000240
Loading
/content/journal/mgen/10.1099/mgen.0.000240
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error