1887

Abstract

Novel adenovirus genotypes are associated with outbreaks of disease, such as acute gastroenteritis, renal disease, upper respiratory tract infection and keratoconjunctivitis. Here, we identify novel and variant adenovirus genotypes in children coinfected with enterotoxigenic Escherichia coli, in Bangladesh. Metagenomic sequencing of stool was performed and whole adenovirus genomes were extracted. A novel species D virus, designated genotype 90 (P33H27F67) was identified, and the partial genome of a putative recombinant species B virus was recovered. Furthermore, the enteric types HAdV-A61 and HAdV-A40 were found in stool specimens. Knowledge of the diversity of adenovirus genomes circulating worldwide, especially in low-income countries where the burden of disease is high, will be required to ensure that future vaccination strategies cover the diversity of adenovirus strains associated with disease.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000221
2018-09-24
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/10/mgen000221.html?itemId=/content/journal/mgen/10.1099/mgen.0.000221&mimeType=html&fmt=ahah

References

  1. Espínola EE, Barrios JC, Russomando G, Mirazo S, Arbiza J. Computational analysis of a species D human adenovirus provides evidence of a novel virus. J Gen Virol 2017;98:2810–2820 [CrossRef][PubMed]
    [Google Scholar]
  2. Matsushima Y, Shimizu H, Kano A, Nakajima E, Ishimaru Y et al. Novel human adenovirus strain, Bangladesh. Emerg Infect Dis 2012;18:846–848 [CrossRef][PubMed]
    [Google Scholar]
  3. Matsushima Y, Shimizu H, Kano A, Nakajima E, Ishimaru Y et al. Genome sequence of a novel virus of the species human adenovirus d associated with acute gastroenteritis. Genome Announc 2013;1:e00068-12 [CrossRef][PubMed]
    [Google Scholar]
  4. Hage E, Gerd Liebert U, Bergs S, Ganzenmueller T, Heim A. Human mastadenovirus type 70: a novel, multiple recombinant species D mastadenovirus isolated from diarrhoeal faeces of a haematopoietic stem cell transplantation recipient. J Gen Virol 2015;96:2734–2742 [CrossRef][PubMed]
    [Google Scholar]
  5. Brown JR, Shah D, Breuer J. Viral gastrointestinal infections and norovirus genotypes in a paediatric UK hospital, 2014–2015. J Clin Virol 2016;84:1–6 [CrossRef][PubMed]
    [Google Scholar]
  6. Hierholzer JC. Adenoviruses in the immunocompromised host. Clin Microbiol Rev 1992;5:262–274[PubMed]
    [Google Scholar]
  7. Clemmons NS, Mccormic ZD, Gaydos JC, Hawksworth AW, Jordan NN. Acute respiratory disease in US army trainees 3 years after reintroduction of adenovirus vaccine. Emerg Infect Dis 2017;23:95–98 [CrossRef][PubMed]
    [Google Scholar]
  8. Liu T, Zhou Z, Tian X, Liu W, Xu D et al. A recombinant trivalent vaccine candidate against human adenovirus types 3, 7, and 55. Vaccine 2018;36:2199–2206 [CrossRef][PubMed]
    [Google Scholar]
  9. Radin JM, Hawksworth AW, Blair PJ, Faix DJ, Raman R et al. Dramatic decline of respiratory illness among US military recruits after the renewed use of adenovirus vaccines. Clin Infect Dis 2014;59:962–968 [CrossRef][PubMed]
    [Google Scholar]
  10. Vellinga J, van der Heijdt S, Hoeben RC. The adenovirus capsid: major progress in minor proteins. J Gen Virol 2005;86:1581–1588 [CrossRef][PubMed]
    [Google Scholar]
  11. Zubieta C, Schoehn G, Chroboczek J, Cusack S. The structure of the human adenovirus 2 penton. Mol Cell 2005;17:121–135 [CrossRef][PubMed]
    [Google Scholar]
  12. Hage E, Dhingra A, Liebert UG, Bergs S, Ganzenmueller T et al. Three novel, multiple recombinant types of species of human mastadenovirus D (HAdV-D 73, 74 & 75) isolated from diarrhoeal faeces of immunocompromised patients. J Gen Virol 2017;98:3037–3045 [CrossRef][PubMed]
    [Google Scholar]
  13. Walsh MP, Chintakuntlawar A, Robinson CM, Madisch I, Harrach B et al. Evidence of molecular evolution driven by recombination events influencing tropism in a novel human adenovirus that causes epidemic keratoconjunctivitis. PLoS One 2009;4:e5635 [CrossRef][PubMed]
    [Google Scholar]
  14. Gardy JL, Loman NJ. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat Rev Genet 2018;19:9–20 [CrossRef][PubMed]
    [Google Scholar]
  15. Houldcroft CJ, Beale MA, Breuer J. Clinical and biological insights from viral genome sequencing. Nat Rev Microbiol 2017;15:183–192 [CrossRef][PubMed]
    [Google Scholar]
  16. Howell KJ, Kraiczy J, Nayak KM, Gasparetto M, Ross A et al. DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology 2018;154:585–598 [CrossRef][PubMed]
    [Google Scholar]
  17. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014;15:R46 [CrossRef][PubMed]
    [Google Scholar]
  18. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–1760 [CrossRef][PubMed]
    [Google Scholar]
  19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAM tools. Bioinformatics 2009;25:2078–2079 [CrossRef][PubMed]
    [Google Scholar]
  20. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011;27:2987–2993 [CrossRef][PubMed]
    [Google Scholar]
  21. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  22. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017;27:824–834 [CrossRef][PubMed]
    [Google Scholar]
  23. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2017; [Epub ahead of print] [CrossRef][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  25. Okonechnikov K, Golosova O, Fursov M. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012;28:1166–1167 [CrossRef][PubMed]
    [Google Scholar]
  26. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS et al. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 1999;73:152–160[PubMed]
    [Google Scholar]
  27. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012;22:568–576 [CrossRef][PubMed]
    [Google Scholar]
  28. Houldcroft CJ, Roy S, Morfopoulou S, Margetts BK, Depledge DP et al. Use of whole-genome sequencing of adenovirus in immunocompromised paediatric patients to identify nosocomial transmission and mixed-genotype infection. J Infect Dis 2018;218:1261–1271 [CrossRef][PubMed]
    [Google Scholar]
  29. Davison AJ, Telford EA, Watson MS, Mcbride K, Mautner V. The DNA sequence of adenovirus type 40. J Mol Biol 1993;234:1308–1316 [CrossRef][PubMed]
    [Google Scholar]
  30. Matsushima Y, Shimizu H, Phan TG, Ushijima H. Genomic characterization of a novel human adenovirus type 31 recombinant in the hexon gene. J Gen Virol 2011;92:2770–2775 [CrossRef][PubMed]
    [Google Scholar]
  31. Andino R, Domingo E. Viral quasispecies. Virology 2015;480:46–51
    [Google Scholar]
  32. Robinson CM, Singh G, Lee JY, Dehghan S, Rajaiya J et al. Molecular evolution of human adenoviruses. Sci Rep 2013;3:1812 [CrossRef][PubMed]
    [Google Scholar]
  33. Hage E, Huzly D, Ganzenmueller T, Beck R, Schulz TF et al. A human adenovirus species B subtype 21a associated with severe pneumonia. J Infect 2014;69:490–499 [CrossRef][PubMed]
    [Google Scholar]
  34. Zhang Q, Seto D, Cao B, Zhao S, Wan C. Genome sequence of human adenovirus type 55, a re-emergent acute respiratory disease pathogen in China. J Virol 2012;86:12441–12442 [CrossRef][PubMed]
    [Google Scholar]
  35. Garnett CT, Talekar G, Mahr JA, Huang W, Zhang Y et al. Latent species C adenoviruses in human tonsil tissues. J Virol 2009;83:2417–2428 [CrossRef][PubMed]
    [Google Scholar]
  36. Lukashev AN, Ivanova OE, Eremeeva TP, Iggo RD. Evidence of frequent recombination among human adenoviruses. J Gen Virol 2008;89:380–388 [CrossRef][PubMed]
    [Google Scholar]
  37. Abd El Ghany M, Chander J, Mutreja A, Rashid M, Hill-Cawthorne GA et al. The population structure of Vibrio cholerae from the Chandigarh region of Northern India. PLoS Negl Trop Dis 2014;8:e2981 [CrossRef][PubMed]
    [Google Scholar]
  38. Weill FX, Domman D, Njamkepo E, Tarr C, Rauzier J et al. Genomic history of the seventh pandemic of cholera in Africa. Science 2017;358:785–789 [CrossRef][PubMed]
    [Google Scholar]
  39. Begum YA, Talukder KA, Azmi IJ, Shahnaij M, Sheikh A et al. Resistance pattern and molecular characterization of enterotoxigenic Escherichia coli (ETEC) strains isolated in Bangladesh. PLoS One 2016;11:e0157415 [CrossRef][PubMed]
    [Google Scholar]
  40. The HC, Thanh DP, Holt KE, Thomson NR, Baker S. The genomic signatures of Shigella evolution, adaptation and geographical spread. Nat Rev Microbiol 2016;14:235–250 [CrossRef][PubMed]
    [Google Scholar]
  41. Shahunja KM, Leung DT, Ahmed T, Bardhan PK, Ahmed D et al. Factors associated with non-typhoidal salmonella bacteremia versus typhoidal salmonella bacteremia in patients presenting for care in an urban diarrheal disease hospital in Bangladesh. PLoS Negl Trop Dis 2015;9:e0004066 [CrossRef][PubMed]
    [Google Scholar]
  42. Lee B, Carmolli M, Dickson DM, Colgate ER, Diehl SA et al. Rotavirus-specific immunoglobulin A responses are impaired and serve as a suboptimal correlate of protection among infants in Bangladesh. Clin Infect Dis 2018;67:186–192 [CrossRef][PubMed]
    [Google Scholar]
  43. Johansson ME, Uhnoo I, Kidd AH, Madeley CR, Wadell G. Direct identification of enteric adenovirus, a candidate new serotype, associated with infantile gastroenteritis. J Clin Microbiol 1980;12:95–100[PubMed]
    [Google Scholar]
  44. de Jong JC, Wigand R, Kidd AH, Wadell G, Kapsenberg JG et al. Candidate adenoviruses 40 and 41: fastidious adenoviruses from human infant stool. J Med Virol 1983;11:215–231[PubMed]
    [Google Scholar]
  45. Ismail AM, Cui T, Dommaraju K, Singh G, Dehghan S et al. Genomic analysis of a large set of currently-and historically-important human adenovirus pathogens. Emerg Microbes Infect 2018;7:10 [CrossRef][PubMed]
    [Google Scholar]
  46. Lamson DM, Kajon A, Shudt M, Girouard G, St George K. Detection and genetic characterization of adenovirus type 14 strain in students with influenza-like illness, New York, USA, 2014–2015. Emerg Infect Dis 2017;23:1194–1197 [CrossRef][PubMed]
    [Google Scholar]
  47. Lin B, Wang Z, Vora GJ, Thornton JA, Schnur JM et al. Broad-spectrum respiratory tract pathogen identification using resequencing DNA microarrays. Genome Res 2006;16:527–535 [CrossRef][PubMed]
    [Google Scholar]
  48. Averbuch D, Safadi R, Dar D, Wolf D, Cherniak M et al. Successful brincidofovir treatment of metagenomics-detected adenovirus infection in a severely Ill STAT1-deficient patient. Pediatr Infect Dis J 2018; [Epub ahead of print] [CrossRef][PubMed]
    [Google Scholar]
  49. Zou X, Fan Y, Zhang W, Lu B, Liu Y et al. Metagenomics facilitated complete genome sequencing of adenovirus untyped by real-time PCR. J Infect 2018;77:158–164 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000221
Loading
/content/journal/mgen/10.1099/mgen.0.000221
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error