1887

Abstract

Xanthomonas fragariae is a quarantine organism in Europe, causing angular leaf spots on strawberry plants. It is spreading worldwide in strawberry-producing regions due to import of plant material through trade and human activities. In order to resolve the population structure at the strain level, we have employed high-resolution molecular typing tools on a comprehensive strain collection representing global and temporal distribution of the pathogen. Clustered regularly interspaced short palindromic repeat regions (CRISPRs) and variable number of tandem repeats (VNTRs) were identified within the reference genome of X. fragariae LMG 25863 as a potential source of variation. Strains from our collection were whole-genome sequenced and used in order to identify variable spacers and repeats for discriminative purpose. CRISPR spacer analysis and multiple-locus VNTR analysis (MLVA) displayed a congruent population structure, in which two major groups and a total of four subgroups were revealed. The two main groups were genetically separated before the first X. fragariae isolate was described and are potentially responsible for the worldwide expansion of the bacterial disease. Three primer sets were designed for discriminating CRISPR-associated markers in order to streamline group determination of novel isolates. Overall, this study describes typing methods to discriminate strains and monitor the pathogen population structure, more especially in the view of a new outbreak of the pathogen.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000189
2018-06-06
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/7/mgen000189.html?itemId=/content/journal/mgen/10.1099/mgen.0.000189&mimeType=html&fmt=ahah

References

  1. van Belkum A. The role of short sequence repeats in epidemiologic typing. Curr Opin Microbiol 1999;2:306–311 [CrossRef][PubMed]
    [Google Scholar]
  2. Bühlmann A, Dreo T, Rezzonico F, Pothier JF, Smits TH et al. Phylogeography and population structure of the biologically invasive phytopathogen Erwinia amylovora inferred using minisatellites. Environ Microbiol 2014;16:2112–2125 [CrossRef][PubMed]
    [Google Scholar]
  3. Vogler AJ, Keys C, Nemoto Y, Colman RE, Jay Z et al. Effect of repeat copy number on variable-number tandem repeat mutations in Escherichia coli O157:H7. J Bacteriol 2006;188:4253–4263 [CrossRef][PubMed]
    [Google Scholar]
  4. Torres-Cruz J, van der Woude MW. Slipped-strand mispairing can function as a phase variation mechanism in Escherichia coli. J Bacteriol 2003;185:6990–6994 [CrossRef][PubMed]
    [Google Scholar]
  5. Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 1987;4:203–221 [CrossRef][PubMed]
    [Google Scholar]
  6. Mazars E, Lesjean S, Banuls AL, Gilbert M, Vincent V et al. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci USA 2001;98:1901–1906 [CrossRef][PubMed]
    [Google Scholar]
  7. Malachowa N, Sabat A, Gniadkowski M, Krzyszton-Russjan J, Empel J et al. Comparison of multiple-locus variable-number tandem-repeat analysis with pulsed-field gel electrophoresis, spa typing, and multilocus sequence typing for clonal characterization of Staphylococcus aureus isolates. J Clin Microbiol 2005;43:3095–3100 [CrossRef][PubMed]
    [Google Scholar]
  8. U'ren JM, Hornstra H, Pearson T, Schupp JM, Leadem B et al. Fine-scale genetic diversity among Burkholderia pseudomallei soil isolates in northeast Thailand. Appl Environ Microbiol 2007;73:6678–6681 [CrossRef][PubMed]
    [Google Scholar]
  9. Girard JM, Wagner DM, Vogler AJ, Keys C, Allender CJ et al. Differential plague-transmission dynamics determine Yersinia pestis population genetic structure on local, regional, and global scales. Proc Natl Acad Sci USA 2004;101:8408–8413 [CrossRef][PubMed]
    [Google Scholar]
  10. Alnaasan Y, Valentini F, Balestra GM, Mazzaglia A, D'Onghia AM et al. Modification of a multiple-locus variable number tandem repeat analysis (MLVA) for typing isolates of Erwinia amylovora. Plant Pathol 2017;66:1075–1080 [CrossRef]
    [Google Scholar]
  11. Pruvost O, Magne M, Boyer K, Leduc A, Tourterel C et al. A MLVA genotyping scheme for global surveillance of the citrus pathogen Xanthomonas citri pv. citri suggests a worldwide geographical expansion of a single genetic lineage. PLoS One 2014;9:e98129 [CrossRef][PubMed]
    [Google Scholar]
  12. Poulin L, Grygiel P, Magne M, Gagnevin L, Rodriguez-R LM et al. New multilocus variable-number tandem-repeat analysis tool for surveillance and local epidemiology of bacterial leaf blight and bacterial leaf streak of rice caused by Xanthomonas oryzae. Appl Environ Microbiol 2015;81:688–698 [CrossRef][PubMed]
    [Google Scholar]
  13. Mojica FJ, Ferrer C, Juez G, Rodríguez-Valera F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 1995;17:85–93 [CrossRef][PubMed]
    [Google Scholar]
  14. Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002;43:1565–1575 [CrossRef][PubMed]
    [Google Scholar]
  15. Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 2007;8:R61 [CrossRef][PubMed]
    [Google Scholar]
  16. Lillestøl RK, Redder P, Garrett RA, Brügger K. A putative viral defence mechanism in archaeal cells. Archaea 2006;2:59–72 [CrossRef][PubMed]
    [Google Scholar]
  17. Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 2005;1:e60 [CrossRef][PubMed]
    [Google Scholar]
  18. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007;315:1709–1712 [CrossRef][PubMed]
    [Google Scholar]
  19. Karginov FV, Hannon GJ. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell 2010;37:7–19 [CrossRef][PubMed]
    [Google Scholar]
  20. Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 2005;151:653–663 [CrossRef][PubMed]
    [Google Scholar]
  21. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005;151:2551–2561 [CrossRef][PubMed]
    [Google Scholar]
  22. McGhee GC, Sundin GW. Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking. PLoS One 2012;7:e41706 [CrossRef][PubMed]
    [Google Scholar]
  23. Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD et al. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 2004;22:1554–1558 [CrossRef][PubMed]
    [Google Scholar]
  24. Smits TH, Rezzonico F, Kamber T, Blom J, Goesmann A et al. Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant Microbe Interact 2010;23:384–393 [CrossRef][PubMed]
    [Google Scholar]
  25. Semenova E, Nagornykh M, Pyatnitskiy M, Artamonova II, Severinov K. Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol Lett 2009;296:110–116 [CrossRef][PubMed]
    [Google Scholar]
  26. Rezzonico F, Smits TH, Duffy B. Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora. Appl Environ Microbiol 2011;77:3819–3829 [CrossRef][PubMed]
    [Google Scholar]
  27. Kennedy B, King T. Angular leafspot, a new disease of strawberry. Phytopathology 1960;50:641–642
    [Google Scholar]
  28. OEPP/EPPO Xanthomonas fragariae Kennedy & King. Bull OEPP 1986;16:17–20
    [Google Scholar]
  29. Roach JA, Verma S, Peres NA, Jamieson AR, van de Weg WE et al. FaRXf1: a locus conferring resistance to angular leaf spot caused by Xanthomonas fragariae in octoploid strawberry. Theor Appl Genet 2016;129:1191–1201 [CrossRef][PubMed]
    [Google Scholar]
  30. Kim DR, Gang GH, Jeon CW, Kang NJ, Lee SW et al. Epidemiology and control of strawberry bacterial angular leaf spot disease caused by Xanthomonas fragariae. Plant Pathol J 2016;32:290–299 [CrossRef][PubMed]
    [Google Scholar]
  31. Zimmermann C, Hinrichs-Berger J, Moltmann E, Buchenauer H. Nested PCR (polymerase chain reaction) for detection of Xanthomonas fragariae in symptomless strawberry plants. J Plant Dis Prot 2004;111:39–51 [CrossRef]
    [Google Scholar]
  32. OEPP/EPPO Xanthomonas fragariae. Bull OEPP 2006;36:135–144
    [Google Scholar]
  33. Hulme PE. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 2009;46:10–18 [CrossRef]
    [Google Scholar]
  34. Bestfleisch M, Richter K, Wensing A, Wünsche JN, Hanke M-V et al. Resistance and systemic dispersal of Xanthomonas fragariae in strawberry germplasm (Fragaria L.). Plant Pathol 2015;64:71–80 [CrossRef]
    [Google Scholar]
  35. Kennedy B, King T. Angular leaf spot of strawberry caused by Xanthomonas fragariae sp. nov. Phytopathology 1962;52:873–875
    [Google Scholar]
  36. Kennedy B, King T. Studies on epidemiology of bacterial angular leafspot on strawberry. Plant Dis Rep 1962;46:360–363
    [Google Scholar]
  37. Roberts PD, Berger RD, Jones JB, Chandler CK, Stall RE. Disease progress, yield loss, and control of Xanthomonas fragariae on strawberry plants. Plant Dis 1997;81:917–921 [CrossRef]
    [Google Scholar]
  38. Litterest M. Neu Krankheit im Erdbeeranbau. Badische Bauernzeitung 1996;49:28
    [Google Scholar]
  39. Epstein A. Angular leaf spot of strawberry. Plant Dis 1966;50:167
    [Google Scholar]
  40. Gilmour MW, Graham M, Reimer A, van Domselaar G. Public health genomics and the new molecular epidemiology of bacterial pathogens. Public Health Genomics 2013;16:25–30 [CrossRef][PubMed]
    [Google Scholar]
  41. Pooler MR, Ritchie DF, Hartung JS. Genetic relationships among strains of Xanthomonas fragariae based on random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and enterobacterial repetitive intergenic consensus PCR data and generation of multiplexed PCR primers useful for the identification of this phytopathogen. Appl Environ Microbiol 1996;62:3121–3127[PubMed]
    [Google Scholar]
  42. Roberts PD, Hodge NC, Bouzar H, Jones JB, Stall RE et al. Relatedness of strains of Xanthomonas fragariae by restriction fragment length polymorphism, DNA–DNA reassociation, and fatty acid analyses. Appl Environ Microbiol 1998;64:3961–3965[PubMed]
    [Google Scholar]
  43. Stöger A, Barionovi D, Calzolari A, Gozzi R, Ruppitsch W et al. Genetic variability of Xanthomonas fragariae strains obtained from field outbreaks and culture collections as revealed by repetitive-sequence PCR and AFLP. J Plant Pathol 2008;90:469–473
    [Google Scholar]
  44. Gétaz M, Bühlmann A, Schneeberger PHH, van Malderghem C, Duffy B et al. A diagnostic tool for improved detection of Xanthomonas fragariae using a rapid and highly specific LAMP assay designed with comparative genomics. Plant Pathol 2017;66:1094–1102 [CrossRef]
    [Google Scholar]
  45. Vandroemme J, Cottyn B, Baeyen S, de Vos P, Maes M. Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content. BMC Genomics 2013;14:829 [CrossRef][PubMed]
    [Google Scholar]
  46. Henry PM, Leveau JH. Finished genome sequences of Xanthomonas fragariae, the cause of bacterial angular leaf spot of strawberry. Genome Announc 2016;4:e01271-16 [CrossRef][PubMed]
    [Google Scholar]
  47. Gétaz M, van der Wolf JM, Blom J, Pothier JF. Complete genome sequences of three isolates of Xanthomonas fragariae, the bacterium responsible for angular leaf spots on strawberry plants. Genome Announc 2017;5:e00642-17 [CrossRef][PubMed]
    [Google Scholar]
  48. Fonzo VD, Aluffi-Pentini F, Parisi V. JSTRING: a novel Java tandem repeats searcher in genomic sequences with an interactive graphic output. Open Appl Inform J 2008;2:14–17 [CrossRef]
    [Google Scholar]
  49. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007;35:W52–W57 [CrossRef][PubMed]
    [Google Scholar]
  50. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:421 [CrossRef][PubMed]
    [Google Scholar]
  51. Young JM, Park DC, Shearman HM, Fargier E. A multilocus sequence analysis of the genus Xanthomonas. Syst Appl Microbiol 2008;31:366–377 [CrossRef][PubMed]
    [Google Scholar]
  52. Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R et al. The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC Genomics 2009;10:616 [CrossRef][PubMed]
    [Google Scholar]
  53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  54. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  55. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016;8:12–24 [CrossRef]
    [Google Scholar]
  56. Koike H. The aluminium-cap method for testing sugarcane varieties against leaf scald disease. Phytopathology 1965;55:317–319
    [Google Scholar]
  57. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011;9:467–477 [CrossRef][PubMed]
    [Google Scholar]
  58. Hong S, Ka D, Yoon SJ, Suh N, Jeong M et al. CRISPR RNA and anti-CRISPR protein binding to the Xanthomonas albilineans Csy1–Csy2 heterodimer in the type I-F CRISPR–Cas system. J Biol Chem 2018;293:2744–2754 [CrossRef][PubMed]
    [Google Scholar]
  59. de Castro LA, Rodrigues Pedroso T, Kuchiishi SS, Ramenzoni M, Kich JD et al. Variable number of tandem aminoacid repeats in adhesion-related CDS products in Mycoplasma hyopneumoniae strains. Vet Microbiol 2006;116:258–269 [CrossRef][PubMed]
    [Google Scholar]
  60. Deng X, Shariat N, Driebe EM, Roe CC, Tolar B et al. Comparative analysis of subtyping methods against a whole-genome-sequencing standard for Salmonella enterica serotype Enteritidis. J Clin Microbiol 2015;53:212–218 [CrossRef][PubMed]
    [Google Scholar]
  61. Sorek R, Kunin V, Hugenholtz P. CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 2008;6:181–186 [CrossRef][PubMed]
    [Google Scholar]
  62. van der Gaag D, Bergsma-Vlami M, van Vaerenbergh J, Vandroemme J, Maes M et al. Pest risk analysis for Xanthomonas fragariae Utrecht, the Netherlands: Netherlands Food and Consumer Product Safety Authority; 2013
    [Google Scholar]
  63. McGechan JK, Fahy PC. Angular leaf spot of strawberry, Xanthomonas fragariae: First record of its occurrence in Australia, and attempts to eradicate the disease. Newsl Austr Plant Pathol Soc 1976;5:57–59 [CrossRef]
    [Google Scholar]
  64. Gillings MR, Fahy PC, Bradley J. Identification of Xanthomonas fragariae, the cause of an outbreak of angular leaf spot on strawberry in South Australia, and comparison with the cause of previous outbreaks in New South Wales and New Zealand. Australas Plant Pathol 1998;27:97–103 [CrossRef]
    [Google Scholar]
  65. Young AJ, Marney TS, Herrington M, Hutton D, Gomez AO et al. Outbreak of angular leaf spot, caused by Xanthomonas fragariae, in a Queensland strawberry germplasm collection. Australas Plant Pathol 2011;40:286–292 [CrossRef]
    [Google Scholar]
  66. IPPC 2015; Eradication of angular leaf spot in a strawberry germplasm collection. Pest reports - International Plant Protection Convention
    [Google Scholar]
  67. Moltmann E, Zimmermann C. Detection of Xanthomonas fragariae in symptomless strawberry plants by nested PCR. EPPO Bull 2005;35:53–54 [CrossRef]
    [Google Scholar]
  68. Fernández-Pavía SP, Rodríguez-Alvarado G, Garay-Serrano E, Cárdenas-Navarro R. First Report of Xanthomonas fragariae causing angular leaf spot on strawberry plants in México. Plant Dis 2014;98:682 [CrossRef]
    [Google Scholar]
  69. Kamangar SB, van Vaerenbergh J, Kamangar S, Maes M. First report of angular leaf spot on strawberry caused by Xanthomonas fragariae in Iran. Plant Dis 2017;101:1031 [CrossRef]
    [Google Scholar]
  70. Wang J, Wei H-L, Chang R-K, Liu H-Q, Wang Y. First report of strawberry bacterial angular leaf spot caused by Xanthomonas fragariae in Tianjin, China. Plant Dis 1949;2017:101
    [Google Scholar]
  71. Vandroemme J, Baeyen S, van Vaerenbergh J, de Vos P, Maes M. Sensitive real-time PCR detection of Xanthomonas fragariae in strawberry plants. Plant Pathol 2008;57:438–444 [CrossRef]
    [Google Scholar]
  72. Wang H, Turechek WW. A loop-mediated isothermal amplification assay and sample preparation procedure for sensitive detection of Xanthomonas fragariae in strawberry. PLoS One 2016;11:e0147122 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000189
Loading
/content/journal/mgen/10.1099/mgen.0.000189
Loading

Data & Media loading...

Supplements

Supplementary File 3

PDF

Supplementary File 4

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error