1887

Abstract

The Arctic is being disproportionally affected by climate change compared with other geographic locations, and is currently experiencing unprecedented melt rates. The Greenland Ice Sheet (GrIS) can be regarded as the largest supraglacial ecosystem on Earth, and ice algae are the dominant primary producers on bare ice surfaces throughout the course of a melt season. Ice-algal-derived pigments cause a darkening of the ice surface, which in turn decreases albedo and increases melt rates. The important role of ice algae in changing melt rates has only recently been recognized, and we currently know little about their community compositions and functions. Here, we present the first analysis of ice algal communities across a 100 km transect on the GrIS by high-throughput sequencing and subsequent oligotyping of the most abundant taxa. Our data reveal an extremely low algal diversity with Ancylonema nordenskiöldii and a Mesotaenium species being by far the dominant taxa at all sites. We employed an oligotyping approach and revealed a hidden diversity not detectable by conventional clustering of operational taxonomic units and taxonomic classification. Oligotypes of the dominant taxa exhibit a site-specific distribution, which may be linked to differences in temperatures and subsequently the extent of the melting. Our results help to better understand the distribution patterns of ice algal communities that play a crucial role in the GrIS ecosystem.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000159
2018-03-16
2019-09-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/3/mgen000159.html?itemId=/content/journal/mgen/10.1099/mgen.0.000159&mimeType=html&fmt=ahah

References

  1. Shiklomanov IA. World fresh water resource. In Gleick PH. (editor) Water Crisis: A Guide to World Fresh Water Resources Oxford University Press; 1993
    [Google Scholar]
  2. Hanna E, Navarro FJ, Pattyn F, Domingues CM, Fettweis X et al. Ice-sheet mass balance and climate change. Nature 2013;498:51–59 [CrossRef][PubMed]
    [Google Scholar]
  3. Nghiem SV, Hall DK, Mote TL, Tedesco M, Albert MR et al. The extreme melt across the Greenland ice sheet in 2012. Geophys Res Lett 2012;39: [CrossRef]
    [Google Scholar]
  4. Nordenskiöld AE. I.—Account of an Expedition to Greenland in the year 1870. Geol Mag 1872;9:289–306 [CrossRef]
    [Google Scholar]
  5. Nordenskjöld NE. Cryoconite found 1870, July 19th– 25th, on the inland ice, east of Auleitsivik Fjord, Disco Bay, Greenland. Geol Mag Decad 1875;2:157–162
    [Google Scholar]
  6. Yallop ML, Anesio AM, Perkins RG, Cook J, Telling J et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J 2012;6:2302–2313 [CrossRef][PubMed]
    [Google Scholar]
  7. Remias D, Holzinger A, Lütz C. Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 2009;48:302–312 [CrossRef]
    [Google Scholar]
  8. Remias D, Holzinger A, Aigner S, Lütz C. Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic). Polar Biol 2012;35:899–908 [CrossRef]
    [Google Scholar]
  9. Anesio AM, Lutz S, Chrismas NAM, Benning LG. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 2017;3:10 [CrossRef][PubMed]
    [Google Scholar]
  10. Lutz S, Anesio AM, Jorge Villar SE, Benning LG. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol Ecol 2014;89:402–414 [CrossRef][PubMed]
    [Google Scholar]
  11. Kol E. Kryobiologie: Biologie und Limnologie des Schnees und EisesVol. 24 Stuttgart: Schweizerbart’sche Verlagsbuchhandlung; 1968
    [Google Scholar]
  12. Ling HU, Seppelt RD. Snow algae of the Windmill Islands, continental Antarctica. Mesotaenium berggrenii (Zygnematales, Chlorophyta) the alga of grey snow. Antarct Sci 1990;2:2143–148 [CrossRef]
    [Google Scholar]
  13. Leya T. Feldstudien und genetische Untersuchungen zur Kryophilie der Schneealgen Nordwestspitzbergens. Shaker Aachen 2004
    [Google Scholar]
  14. Remias D, Schwaiger S, Aigner S, Leya T, Stuppner H et al. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol Ecol 2012;79:638–648 [CrossRef][PubMed]
    [Google Scholar]
  15. Takeuchi N. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range). Environ Res Lett 2013;8:35002 [CrossRef]
    [Google Scholar]
  16. Thomas WH, Duval B. Sierra Nevada, California, USA, snow algae: snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arct Alp Res 1995;27:389–399 [CrossRef]
    [Google Scholar]
  17. Benning LG, Anesio AM, Lutz S, Tranter M. Biological impact on Greenland's albedo. Nat Geosci 2014;7:691 [CrossRef]
    [Google Scholar]
  18. Cook JM, Hodson AJ, Taggart AJ, Mernild SH, Tranter M. A predictive model for the spectral “bioalbedo” of snow. J Geophys Res 2017;122:434–454 [CrossRef]
    [Google Scholar]
  19. Cook JM, Hodson AJ, Gardner AS, Flanner M, Tedstone AJ et al. Quantifying bioalbedo: a new physically-based model and critique of empirical methods for characterizing biological influence on ice and snow albedo. Cryosph Discuss 2017;1–29 [CrossRef]
    [Google Scholar]
  20. Hoham RW, Duval B. Microbial Ecology of Snow and Freshwater Ice with Emphasis on Snow Algae Cambridge: Cambridge University Press; 2001; pp.168–228
    [Google Scholar]
  21. Remias D. Cell Structure and Physiology of Alpine Snow and Ice Algae Vienna: Springer; 2012
    [Google Scholar]
  22. Takeuchi N, Nagatsuka N, Uetake J. Spatial variations in impurities (cryoconite) on glaciers in northwest Greenland. Bull 2014
    [Google Scholar]
  23. Uetake J, Naganuma T, Hebsgaard MB, Kanda H, Kohshima S. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci 2010;4:71–80 [CrossRef]
    [Google Scholar]
  24. Lutz S, Anesio AM, Raiswell R, Edwards A, Newton RJ et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat Commun 2016;7:11968 [CrossRef][PubMed]
    [Google Scholar]
  25. Lutz S, Anesio AM, Edwards A, Benning LG. Linking microbial diversity and functionality of arctic glacial surface habitats. Environ Microbiol 2017;19:551–565 [CrossRef][PubMed]
    [Google Scholar]
  26. Lutz S, Anesio AM, Edwards A, Benning LG. Microbial diversity on Icelandic glaciers and ice caps. Front Microbiol 2015;6:307 [CrossRef][PubMed]
    [Google Scholar]
  27. Brown SP, Ungerer MC, Jumpponen A. A community of clones: snow algae are diverse communities of spatially structured clones. Int J Plant Sci 2016;177:432–439 [CrossRef]
    [Google Scholar]
  28. Cameron KA, Stibal M, Zarsky JD, Gözdereliler E, Schostag M et al. Supraglacial bacterial community structures vary across the Greenland ice sheet. FEMS Microbiol Ecol 2016;92:fiv164 [CrossRef][PubMed]
    [Google Scholar]
  29. Edwards A, Pachebat JA, Swain M, Hegarty M, Hodson AJ et al. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environ Res Lett 2013;8:035003 [CrossRef]
    [Google Scholar]
  30. Gokul JK, Hodson AJ, Saetnan ER, Irvine-Fynn TD, Westall PJ et al. Taxon interactions control the distributions of cryoconite bacteria colonizing a high Arctic ice cap. Mol Ecol 2016;25:3752–3767 [CrossRef][PubMed]
    [Google Scholar]
  31. Buchheim MA, Keller A, Koetschan C, Förster F, Merget B et al. Internal transcribed spacer 2 (nu ITS2 rRNA) sequence-structure phylogenetics: towards an automated reconstruction of the green algal tree of life. PLoS One 2011;6:e16931 [CrossRef][PubMed]
    [Google Scholar]
  32. Yao H, Song J, Liu C, Luo K, Han J et al. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One 2010;5:e13102 [CrossRef][PubMed]
    [Google Scholar]
  33. Stern RF, Andersen RA, Jameson I, Küpper FC, Coffroth MA et al. Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. PLoS One 2012;7:e42780 [CrossRef][PubMed]
    [Google Scholar]
  34. Thornhill DJ, Lajeunesse TC, Santos SR. Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol Ecol 2007;16:5326–5340 [CrossRef][PubMed]
    [Google Scholar]
  35. Simon UK, Weiss M. Intragenomic variation of fungal ribosomal genes is higher than previously thought. Mol Biol Evol 2008;25:2251–2254 [CrossRef][PubMed]
    [Google Scholar]
  36. Chase MW, Fay MF. Ecology. Barcoding of plants and fungi. Science 2009;325:682–683 [CrossRef][PubMed]
    [Google Scholar]
  37. Antony-Babu S, Stien D, Eparvier V, Parrot D, Tomasi S et al. Multiple Streptomyces species with distinct secondary metabolomes have identical 16S rRNA gene sequences. Sci Rep 2017;7:11089 [CrossRef][PubMed]
    [Google Scholar]
  38. Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE et al. Genotypic diversity within a natural coastal bacterioplankton population. Science 2005;307:1311–1313 [CrossRef][PubMed]
    [Google Scholar]
  39. Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 2013;4:1111–1119 [CrossRef][PubMed]
    [Google Scholar]
  40. Eren AM, Borisy GG, Huse SM, Mark Welch JL. Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci USA 2014;111:E28752884 [CrossRef][PubMed]
    [Google Scholar]
  41. Schirmer M, Ijaz UZ, D'Amore R, Hall N, Sloan WT et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res 2015;43:e37 [CrossRef][PubMed]
    [Google Scholar]
  42. Wientjes IGM, Oerlemans J. An explanation for the dark region in the western melt zone of the Greenland ice sheet. Cryosph 2010;4:261–268 [CrossRef]
    [Google Scholar]
  43. Cheung MK, Au CH, Chu KH, Kwan HS, Wong CK. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 2010;4:1053–1059 [CrossRef][PubMed]
    [Google Scholar]
  44. Mikhailyuk TI, Sluiman HJ, Massalski A, Mudimu O, Demchenko EM et al. New streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta). J Phycol 2008;44:1586–1603 [CrossRef][PubMed]
    [Google Scholar]
  45. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols Elsevier; 1990; pp.315–322
    [Google Scholar]
  46. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335–336 [CrossRef][PubMed]
    [Google Scholar]
  47. Coleman AW, Suarez A, Goff LJ. Molecular delineation of species and syngens in Volvocacean green algae (Chlorophyta). J Phycol 1994;30:80–90 [CrossRef]
    [Google Scholar]
  48. Matsuzaki R, Kawai-Toyooka H, Hara Y, Nozaki H. Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae). Phycologia 2015;54:491–502 [CrossRef]
    [Google Scholar]
  49. Naff CS, Darcy JL, Schmidt SK. Phylogeny and biogeography of an uncultured clade of Snow Chytrids. Environ Microbiol 2013;15:
    [Google Scholar]
  50. Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res 2002;12:656–664 [CrossRef][PubMed]
    [Google Scholar]
  51. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590–D596 [CrossRef][PubMed]
    [Google Scholar]
  52. Abarenkov K, Henrik Nilsson R, Larsson KH, Alexander IJ, Eberhardt U et al. The UNITE database for molecular identification of fungi-recent updates and future perspectives. New Phytol 2010;186:281–285 [CrossRef][PubMed]
    [Google Scholar]
  53. van As D, Fausto R. Programme for Monitoring of the Greenland Ice Sheet (PROMICE): first temperature and ablation record. Geol Surv Den Greenl 2010;23:73–76
    [Google Scholar]
  54. Remias D, Jost S, Boenigk J, Wastian J, Lütz C. Hydrurus- related golden algae (Chrysophyceae) cause yellow snow in polar summer snowfields. Phycol Res 2013;61:277–285 [CrossRef]
    [Google Scholar]
  55. Lutz S, Anesio AM, Field K, Benning LG. Integrated 'Omics', targeted metabolite and single-cell analyses of arctic snow algae functionality and adaptability. Front Microbiol 2015;6:1323 [CrossRef][PubMed]
    [Google Scholar]
  56. Remias D, Karsten U, Lütz C, Leya T. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 2010;243:73–86 [CrossRef][PubMed]
    [Google Scholar]
  57. Takeuchi N. The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range). Hydrol Process 2001;15:3447–3459 [CrossRef]
    [Google Scholar]
  58. Müller T, Bleiß W, Martin C-D, Rogaschewski S, Fuhr G. Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol 1998;20:14–32 [CrossRef]
    [Google Scholar]
  59. Stibal M, Elster J, Sabacká M, Kastovská K. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol 2007;59:265–273 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000159
Loading
/content/journal/mgen/10.1099/mgen.0.000159
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error