1887

Abstract

Neisseria meningitidis serogroup B (MnB) was responsible for two independent meningococcal disease outbreaks at universities in the USA during 2013. The first at University A in New Jersey included nine confirmed cases reported between March 2013 and March 2014. The second outbreak occurred at University B in California, with four confirmed cases during November 2013. The public health response to these outbreaks included the approval and deployment of a serogroup B meningococcal vaccine that was not yet licensed in the USA. This study investigated the use of whole-genome sequencing(WGS) to examine the genetic profile of the disease-causing outbreak isolates at each university. Comparative WGS revealed differences in evolutionary patterns between the two disease outbreaks. The University A outbreak isolates were very closely related, with differences primarily attributed to single nucleotide polymorphisms/insertion-deletion (SNP/indel) events. In contrast, the University B outbreak isolates segregated into two phylogenetic clades, differing in large part due to recombination events covering extensive regions (>30 kb) of the genome including virulence factors. This high-resolution comparison of two meningococcal disease outbreaks further demonstrates the genetic complexity of meningococcal bacteria as related to evolution and disease virulence.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000155
2018-04-04
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/4/mgen000155.html?itemId=/content/journal/mgen/10.1099/mgen.0.000155&mimeType=html&fmt=ahah

References

  1. Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM. Meningococcal disease. N Engl J Med 2001;344:1378–1388 [CrossRef][PubMed]
    [Google Scholar]
  2. Harrison LH, Trotter CL, Ramsay ME. Global epidemiology of meningococcal disease. Vaccine 2009;27:B51–B63 [CrossRef][PubMed]
    [Google Scholar]
  3. Bijlsma MW, Bekker V, Brouwer MC, Spanjaard L, van de Beek D et al. Epidemiology of invasive meningococcal disease in the Netherlands, 1960–2012: an analysis of national surveillance data. Lancet Infect Dis 2014;14:805–812 [CrossRef][PubMed]
    [Google Scholar]
  4. Chang Q, Tzeng YL, Stephens DS. Meningococcal disease: changes in epidemiology and prevention. Clin Epidemiol 2012;4:237–245 [CrossRef][PubMed]
    [Google Scholar]
  5. Finne J, Leinonen M, Mäkelä PH. Antigenic similarities between brain components and bacteria causing meningitis. Implications for vaccine development and pathogenesis. Lancet 1983;2:355–357 [CrossRef][PubMed]
    [Google Scholar]
  6. Trumenba: a serogroup B meningococcal vaccine. Med Lett Drugs Ther 2015;57:5–6[PubMed]
    [Google Scholar]
  7. Bexsero–a second serogroup B meningococcal vaccine. Med Lett Drugs Ther 2015;57:158–159[PubMed]
    [Google Scholar]
  8. Wang X, Shutt KA, Vuong JT, Cohn A, Macneil J et al. Changes in the population structure of invasive Neisseria meningitidis in the United States after quadrivalent meningococcal conjugate vaccine licensure. J Infect Dis 2015;211:1887–1894 [CrossRef][PubMed]
    [Google Scholar]
  9. Cohn A, Macneil J. The changing epidemiology of meningococcal disease. Infect Dis Clin North Am 2015;29:667–677 [CrossRef][PubMed]
    [Google Scholar]
  10. Atkinson B, Gandhi A, Balmer P. History of meningococcal outbreaks in the United States: implications for vaccination and disease prevention. Pharmacotherapy 2016;36:880–892 [CrossRef][PubMed]
    [Google Scholar]
  11. McNamara LA, Shumate AM, Johnsen P, Macneil JR, Patel M et al. First use of a serogroup B meningococcal vaccine in the US in response to a University outbreak. Pediatrics 2015;135:798–804 [CrossRef][PubMed]
    [Google Scholar]
  12. Breakwell L, Vogt TM, Fleming D, Ferris M, Briere E et al. Understanding factors affecting University A students' decision to receive an unlicensed serogroup B meningococcal vaccine. J Adolesc Health 2016;59:457–464 [CrossRef][PubMed]
    [Google Scholar]
  13. Donald RG, Hawkins JC, Hao L, Liberator P, Jones TR et al. Meningococcal serogroup B vaccines: estimating breadth of coverage. Hum Vaccin Immunother 2017;13:255–265 [CrossRef][PubMed]
    [Google Scholar]
  14. Jelfs J, Jalaludin B, Munro R, Patel M, Kerr M et al. A cluster of meningococcal disease in western Sydney, Australia initially associated with a nightclub. Epidemiol Infect 1998;120:263–270 [CrossRef][PubMed]
    [Google Scholar]
  15. Popovic T, Schmink S, Rosenstein NA, Ajello GW, Reeves MW et al. Evaluation of pulsed-field gel electrophoresis in epidemiological investigations of meningococcal disease outbreaks caused by Neisseria meningitidis serogroup C. J Clin Microbiol 2001;39:75–85 [CrossRef][PubMed]
    [Google Scholar]
  16. Feavers IM, Gray SJ, Urwin R, Russell JE, Bygraves JA et al. Multilocus sequence typing and antigen gene sequencing in the investigation of a meningococcal disease outbreak. J Clin Microbiol 1999;37:3883–3887[PubMed]
    [Google Scholar]
  17. Harrison OB, Brueggemann AB, Caugant DA, van der Ende A, Frosch M et al. Molecular typing methods for outbreak detection and surveillance of invasive disease caused by Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae, a review. Microbiology 2011;157:2181–2195 [CrossRef][PubMed]
    [Google Scholar]
  18. Harris SR, Cartwright EJ, Török ME, Holden MT, Brown NM et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis 2013;13:130–136 [CrossRef][PubMed]
    [Google Scholar]
  19. Jolley KA, Maiden MC. Automated extraction of typing information for bacterial pathogens from whole genome sequence data: Neisseria meningitidis as an exemplar. Euro Surveill 2013;18:20379 [CrossRef][PubMed]
    [Google Scholar]
  20. Jones CH, Mohamed N, Rojas E, Andrew L, Hoyos J et al. Comparison of phenotypic and genotypic approaches to capsule typing of Neisseria meningitidis by use of invasive and carriage isolate collections. J Clin Microbiol 2016;54:25–34 [CrossRef][PubMed]
    [Google Scholar]
  21. Vuong J, Collard JM, Whaley MJ, Bassira I, Seidou I et al. Development of real-time PCR methods for the detection of bacterial meningitis pathogens without DNA extraction. PLoS One 2016;11:e0147765 [CrossRef][PubMed]
    [Google Scholar]
  22. Sacchi CT, Whitney AM, Popovic T, Beall DS, Reeves MW et al. Diversity and prevalence of PorA types in Neisseria meningitidis serogroup B in the United States, 1992–1998. J Infect Dis 2000;182:1169–1176 [CrossRef][PubMed]
    [Google Scholar]
  23. Wang X, Cohn A, Comanducci M, Andrew L, Zhao X et al. Prevalence and genetic diversity of candidate vaccine antigens among invasive Neisseria meningitidis isolates in the United States. Vaccine 2011;29:4739–4744 [CrossRef][PubMed]
    [Google Scholar]
  24. Jolley KA, Maiden MC. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010;11:595 [CrossRef][PubMed]
    [Google Scholar]
  25. Hsu LY, Harris SR, Chlebowicz MA, Lindsay JA, Koh TH et al. Evolutionary dynamics of methicillin-resistant Staphylococcus aureus within a healthcare system. Genome Biol 2015;16:81 [CrossRef][PubMed]
    [Google Scholar]
  26. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  27. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  28. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015;43:e15 [CrossRef][PubMed]
    [Google Scholar]
  29. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG et al. ACT: the Artemis comparison tool. Bioinformatics 2005;21:3422–3423 [CrossRef][PubMed]
    [Google Scholar]
  30. Diermayer M, Hedberg K, Hoesly F, Fischer M, Perkins B et al. Epidemic serogroup B meningococcal disease in Oregon: the evolving epidemiology of the ET-5 strain. JAMA 1999;281:1493–1497[PubMed]
    [Google Scholar]
  31. Wiringa AE, Shutt KA, Marsh JW, Cohn AC, Messonnier NE et al. Geotemporal analysis of Neisseria meningitidis clones in the United States: 2000–2005. PLoS One 2013;8:e82048 [CrossRef][PubMed]
    [Google Scholar]
  32. Hill DJ, Griffiths NJ, Borodina E, Virji M. Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease. Clin Sci 2010;118:547–564 [CrossRef][PubMed]
    [Google Scholar]
  33. Murphy E, Andrew L, Lee KL, Dilts DA, Nunez L et al. Sequence diversity of the factor H binding protein vaccine candidate in epidemiologically relevant strains of serogroup B Neisseria meningitidis. J Infect Dis 2009;200:379–389 [CrossRef][PubMed]
    [Google Scholar]
  34. Hoiseth SK, Murphy E, Andrew L, Vogel U, Frosch M et al. A multi-country evaluation of Neisseria meningitidis serogroup B factor H-binding proteins and implications for vaccine coverage in different age groups. Pediatr Infect Dis J 2013;32:1096–1101 [CrossRef][PubMed]
    [Google Scholar]
  35. Cohn AC, MacNeil JR, Clark TA, Ortega-Sanchez IR, Briere EZ et al. Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2013;62:1–28[PubMed]
    [Google Scholar]
  36. Jolley KA, Hill DM, Bratcher HB, Harrison OB, Feavers IM et al. Resolution of a meningococcal disease outbreak from whole-genome sequence data with rapid Web-based analysis methods. J Clin Microbiol 2012;50:3046–3053 [CrossRef][PubMed]
    [Google Scholar]
  37. Lavezzo E, Toppo S, Franchin E, di Camillo B, Finotello F et al. Genomic comparative analysis and gene function prediction in infectious diseases: application to the investigation of a meningitis outbreak. BMC Infect Dis 2013;13:554–561 [CrossRef][PubMed]
    [Google Scholar]
  38. Mulhall RM, Brehony C, O'Connor L, Meyler K, Jolley KA et al. Resolution of a protracted serogroup B meningococcal outbreak with whole-genome sequencing shows interspecies genetic transfer. J Clin Microbiol 2016;54:2891–2899 [CrossRef][PubMed]
    [Google Scholar]
  39. Soeters HM, McNamara LA, Whaley M, Wang X, Alexander-Scott N et al. Serogroup B meningococcal disease outbreak and carriage evaluation at a College – Rhode Island, 2015. MMWR Morb Mortal Wkly Rep 2015;64:606–607[PubMed]
    [Google Scholar]
  40. Taha MK, Hawkins JC, Liberator P, Deghmane AE, Andrew L et al. Bactericidal activity of sera from adolescents vaccinated with bivalent rLP2086 against meningococcal serogroup B outbreak strains from France. Vaccine 2017;35:1530–1537 [CrossRef][PubMed]
    [Google Scholar]
  41. Cohn AC, MacNeil JR, Harrison LH, Hatcher C, Theodore J. Changes in Neisseria meningitidis disease epidemiology in the United States, 1998–2007: implications for prevention of meningococcal disease. Clin Infect Dis 2010;50:184–191 [CrossRef][PubMed]
    [Google Scholar]
  42. Buckee CO, Jolley KA, Recker M, Penman B, Kriz P et al. Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis. Proc Natl Acad Sci USA 2008;105:15082–15087 [CrossRef][PubMed]
    [Google Scholar]
  43. Bjune G, Høiby EA, Grønnesby JK, Arnesen O, Fredriksen JH et al. Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet 1991;338:1093–1096 [CrossRef][PubMed]
    [Google Scholar]
  44. Jolley KA, Wilson DJ, Kriz P, Mcvean G, Maiden MC. The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. Mol Biol Evol 2005;22:562–569 [CrossRef][PubMed]
    [Google Scholar]
  45. Achtman M. Epidemic spread and antigenic variability of Neisseria meningitidis. Trends Microbiol 1995;3:186–192 [CrossRef][PubMed]
    [Google Scholar]
  46. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs 2009;69:1555–1623 [CrossRef][PubMed]
    [Google Scholar]
  47. Fletcher LD, Bernfield L, Barniak V, Farley JE, Howell A et al. Vaccine potential of the Neisseria meningitidis 2086 lipoprotein. Infect Immun 2004;72:2088–2100 [CrossRef][PubMed]
    [Google Scholar]
  48. Zlotnick GW, Jones TR, Liberator P, Hao L, Harris S et al. The discovery and development of a novel vaccine to protect against Neisseria meningitidis serogroup B disease. Hum Vaccin Immunother 2015;11:5–13 [CrossRef][PubMed]
    [Google Scholar]
  49. Harris SL, Donald RG, Hawkins JC, Tan C, O'Neill R et al. Neisseria meningitidis serogroup B vaccine, bivalent rLP2086, induces broad serum bactericidal activity against diverse invasive disease strains including outbreak strains. Pediatr Infect Dis J 2017;36:216–223 [CrossRef][PubMed]
    [Google Scholar]
  50. Basta NE, Mahmoud AA, Wolfson J, Ploss A, Heller BL et al. Immunogenicity of a Meningococcal B Vaccine during a University Outbreak. N Engl J Med 2016;375:220–228 [CrossRef][PubMed]
    [Google Scholar]
  51. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 2011;12:402 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000155
Loading
/content/journal/mgen/10.1099/mgen.0.000155
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error