1887

Abstract

Bacteroides fragilis, an important component of the human gastrointestinal microbiota, can cause lethal extra-intestinal infection upon escape from the gastrointestinal tract. We demonstrated transfer and recombination of large chromosomal segments from B. fragilis HMW615, a multidrug resistant clinical isolate, to B. fragilis 638R. In one example, the transfer of a segment of ~435 Kb/356 genes replaced ~413 Kb/326 genes of the B. fragilis 638R chromosome. In addition to transfer of antibiotic resistance genes, these transfers (1) replaced complete divergent polysaccharide biosynthesis loci; (2) replaced DNA inversion-controlled intergenic shufflons (that control expression of genes encoding starch utilization system outer membrane proteins) with more complex, divergent shufflons; and (3) introduced additional intergenic shufflons encoding divergent Type 1 restriction/modification systems. Conjugative transposon-like genes within a transferred segment and within a putative integrative conjugative element (ICE5) ~45 kb downstream from the transferred segment both encode proteins that may be involved in the observed transfer. These data indicate that chromosomal transfer is a driver of antigenic diversity and nutrient adaptation in Bacteroides that (1) contributes to the dissemination of the extensive B. fragilis pan-genome, (2) allows rapid adaptation to a changing environment and (3) can confer pathogenic characteristics to host symbionts.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000136
2017-11-14
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/11/mgen000136.html?itemId=/content/journal/mgen/10.1099/mgen.0.000136&mimeType=html&fmt=ahah

References

  1. Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 2007;20:593–621 [CrossRef][PubMed]
    [Google Scholar]
  2. Wexler HM. The genus Bacteroides. In Rosenberg EY, DeLong EF, Thompson F, Lory S, Stackebrandt E. et al. (editors) The Prokaryotes: Other Major Lineages of Bacteria and the Archaea Berlin, Heidelberg: Springer Verlig; 2014; pp.459–484
    [Google Scholar]
  3. Nguyen M, Vedantam G. Mobile genetic elements in the genus Bacteroides, and their mechanism(s) of dissemination. Mob Genet Elements 2011;1:187–196 [CrossRef][PubMed]
    [Google Scholar]
  4. Salyers AA, Shoemaker NB, Li LY. In the driver's seat: the Bacteroides conjugative transposons and the elements they mobilize. J Bacteriol 1995;177:5727–5731 [CrossRef][PubMed]
    [Google Scholar]
  5. Wozniak RA, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010;8:552–563 [CrossRef][PubMed]
    [Google Scholar]
  6. Shoemaker NB, Vlamakis H, Hayes K, Salyers AA. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol 2001;67:561–568 [CrossRef][PubMed]
    [Google Scholar]
  7. Vedantam G, Hecht DW. Antibiotics and anaerobes of gut origin. Curr Opin Microbiol 2003;6:457–461 [CrossRef][PubMed]
    [Google Scholar]
  8. Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G. Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2011;2:93 [CrossRef][PubMed]
    [Google Scholar]
  9. Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 2013;501:426–429 [CrossRef][PubMed]
    [Google Scholar]
  10. Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol 2011;2:158 [CrossRef][PubMed]
    [Google Scholar]
  11. Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 2008;36:6688–6719 [CrossRef][PubMed]
    [Google Scholar]
  12. Andam CP, Gogarten JP. Biased gene transfer in microbial evolution. Nat Rev Microbiol 2011;9:543–555 [CrossRef][PubMed]
    [Google Scholar]
  13. Jain R, Rivera MC, Moore JE, Lake JA. Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol 2003;20:1598–1602 [CrossRef][PubMed]
    [Google Scholar]
  14. Pál C, Papp B, Lercher MJ. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 2005;37:1372–1375 [CrossRef][PubMed]
    [Google Scholar]
  15. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000;405:299–304 [CrossRef][PubMed]
    [Google Scholar]
  16. Dubnau D. DNA uptake in bacteria. Annu Rev Microbiol 1999;53:217–244 [CrossRef][PubMed]
    [Google Scholar]
  17. Burrus V, Pavlovic G, Decaris B, Guédon G. Conjugative transposons: the tip of the iceberg. Mol Microbiol 2002;46:601–610 [CrossRef][PubMed]
    [Google Scholar]
  18. Wilson JW. Genetic exchange in bacteria and the modular structure of mobile DNA elements. In Nickerson CJ, Schurr MJ. (editors) Molecular Paradigms of Infectious Disease (Emerging Infectious Diseases of the 21st Century) Springer; 2006; pp.34–77
    [Google Scholar]
  19. Booth SJ, van Tassell RL, Johnson JL, Wilkins TD. Bacteriophages of Bacteroides. Rev Infect Dis 1979;1:325–336 [CrossRef][PubMed]
    [Google Scholar]
  20. Osborn AM, Böltner D. When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid 2002;48:202–212 [CrossRef][PubMed]
    [Google Scholar]
  21. Langille MG, Hsiao WW, Brinkman FS. Detecting genomic islands using bioinformatics approaches. Nat Rev Microbiol 2010;8:373–382 [CrossRef][PubMed]
    [Google Scholar]
  22. Bi D, Xu Z, Harrison EM, Tai C, Wei Y et al. ICEberg: a web-based resource for integrative and conjugative elements found in bacteria. Nucleic Acids Res 2012;40:D621–D626 [CrossRef][PubMed]
    [Google Scholar]
  23. Waters JL, Salyers AA. Regulation of CTnDOT conjugative transfer is a complex and highly coordinated series of events. MBio 2013;4:e00569-13 [CrossRef][PubMed]
    [Google Scholar]
  24. Husain F, Veeranagouda Y, Boente R, Tang K, Mulato G et al. The Ellis Island effect: a novel mobile element in a multi-drug resistant Bacteroides fragilis clinical isolate includes a mosaic of resistance genes from gram-positive bacteria. Mob Genet Elements 2014;4:E29801E29812 [CrossRef][PubMed]
    [Google Scholar]
  25. Husain F, Veeranagouda Y, Hsi J, Meggersee R, Abratt V et al. Two multidrug-resistant clinical isolates of Bacteroides fragilis carry a novel metronidazole resistance nim gene (nimJ). Antimicrob Agents Chemother 2013;57:3767–3774 [CrossRef][PubMed]
    [Google Scholar]
  26. Mcmahon SA, Roberts GA, Johnson KA, Cooper LP, Liu H et al. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res 2009;37:4887–4897 [CrossRef][PubMed]
    [Google Scholar]
  27. Cerdeño-Tárraga AM, Patrick S, Crossman LC, Blakely G, Abratt V et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 2005;307:1463–1465 [CrossRef][PubMed]
    [Google Scholar]
  28. Patrick S, Blakely GW, Houston S, Moore J, Abratt VR et al. Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. Microbiology 2010;156:3255–3269 [CrossRef][PubMed]
    [Google Scholar]
  29. Liu CH, Lee SM, Vanlare JM, Kasper DL, Mazmanian SK. Regulation of surface architecture by symbiotic bacteria mediates host colonization. Proc Natl Acad Sci USA 2008;105:3951–3956 [CrossRef][PubMed]
    [Google Scholar]
  30. Coyne MJ, Chatzidaki-Livanis M, Paoletti LC, Comstock LE. Role of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont Bacteroides fragilis. Proc Natl Acad Sci USA 2008;105:13099–13104 [CrossRef][PubMed]
    [Google Scholar]
  31. Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 2007;5:e156 [CrossRef][PubMed]
    [Google Scholar]
  32. Privitera G, Dublanchet A, Sebald M. Transfer of multiple antibiotic resistance between subspecies of Bacteroides fragilis. J Infect Dis 1979;139:97–101 [CrossRef][PubMed]
    [Google Scholar]
  33. Pumbwe L, Chang A, Smith RL, Wexler HM. BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis. Microb Drug Resist 2007;13:96–101 [CrossRef][PubMed]
    [Google Scholar]
  34. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res 2011;39:W347–W352 [CrossRef][PubMed]
    [Google Scholar]
  35. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016;44:W16–W21 [CrossRef][PubMed]
    [Google Scholar]
  36. Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J et al. GenBank. Nucleic Acids Res 2014;42:D32–D37 [CrossRef][PubMed]
    [Google Scholar]
  37. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  38. Carver T, Berriman M, Tivey A, Patel C, Böhme U et al. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 2008;24:2672–2676 [CrossRef][PubMed]
    [Google Scholar]
  39. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010;5:e11147 [CrossRef][PubMed]
    [Google Scholar]
  40. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009;25:119–120 [CrossRef][PubMed]
    [Google Scholar]
  41. Hochhut B, Marrero J, Waldor MK. Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J Bacteriol 2000;182:2043–2047 [CrossRef][PubMed]
    [Google Scholar]
  42. Torres OR, Korman RZ, Zahler SA, Dunny GM. The conjugative transposon Tn925: enhancement of conjugal transfer by tetracycline in Enterococcus faecalis and mobilization of chromosomal genes in Bacillus subtilis and E. faecalis. Mol Gen Genet 1991;225:395–400 [CrossRef][PubMed]
    [Google Scholar]
  43. Whittle G, Hamburger N, Shoemaker NB, Salyers AA. A Bacteroides conjugative transposon, CTnERL, can transfer a portion of itself by conjugation without excising from the chromosome. J Bacteriol 2006;188:1169–1174 [CrossRef][PubMed]
    [Google Scholar]
  44. Reuter M, Parry F, Dryden DT, Blakely GW. Single-molecule imaging of Bacteroides fragilis AddAB reveals the highly processive translocation of a single motor helicase. Nucleic Acids Res 2010;38:3721–3731 [CrossRef][PubMed]
    [Google Scholar]
  45. Kogoma T, Cadwell GW, Barnard KG, Asai T. The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J Bacteriol 1996;178:1258–1264 [CrossRef][PubMed]
    [Google Scholar]
  46. Brouwer MS, Roberts AP, Hussain H, Williams RJ, Allan E et al. Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nat Commun 2013;4:1–6 [CrossRef][PubMed]
    [Google Scholar]
  47. Patrick S. Bacteroides. In Tang Y-W, Sussman M, Liu D, Poxton I. (editors) Molecular Medical Microbiology London: Academic Press; 2015
    [Google Scholar]
  48. Zhang G, Dai J, Lu Z, Dunaway-Mariano D. The phosphonopyruvate decarboxylase from Bacteroides fragilis. J Biol Chem 2003;278:41302–41308 [CrossRef][PubMed]
    [Google Scholar]
  49. Rescigno M. Mucosal immunology and bacterial handling in the intestine. Best Pract Res Clin Gastroenterol 2013;27:17–24 [CrossRef][PubMed]
    [Google Scholar]
  50. Hanley SA, Aduse-Opoku J, Curtis MA. A 55-kilodalton immunodominant antigen of Porphyromonas gingivalis W50 has arisen via horizontal gene transfer. Infect Immun 1999;67:1157–1171
    [Google Scholar]
  51. Cho KH, Salyers AA. Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 2001;183:7224–7230 [CrossRef][PubMed]
    [Google Scholar]
  52. Makarova KS, Wolf YI, Snir S, Koonin EV. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 2011;193:6039–6056 [CrossRef][PubMed]
    [Google Scholar]
  53. Paauw A, Leverstein-van Hall MA, Verhoef J, Fluit AC. Evolution in quantum leaps: multiple combinatorial transfers of HPI and other genetic modules in Enterobacteriaceae. PLoS One 2010;5:e8662 [CrossRef][PubMed]
    [Google Scholar]
  54. Dobrindt U, Hochhut B, Hentschel U, Hacker J. Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2004;2:414–424 [CrossRef]
    [Google Scholar]
  55. Schmidt H, Hensel M. Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 2004;17:14–56 [CrossRef][PubMed]
    [Google Scholar]
  56. Groisman EA, Ochman H. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 1996;87:791–794 [CrossRef][PubMed]
    [Google Scholar]
  57. Daccord A, Ceccarelli D, Burrus V. Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of Vibrio genomic islands. Mol Microbiol 2010;78:576–588 [CrossRef]
    [Google Scholar]
  58. Sullivan JT, Ronson CW. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci USA 1998;95:5145–5149 [CrossRef][PubMed]
    [Google Scholar]
  59. Spagnoletti M, Ceccarelli D, Rieux A, Fondi M, Taviani E et al. Acquisition and evolution of SXT-R391 integrative conjugative elements in the seventh-pandemic Vibrio cholerae lineage. MBio 2014;5:e01356-1401314 [CrossRef]
    [Google Scholar]
  60. Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci USA 1995;92:8985–8989 [CrossRef][PubMed]
    [Google Scholar]
  61. Bacic M, Parker AC, Stagg J, Whitley HP, Wells WG et al. Genetic and structural analysis of the Bacteroides conjugative transposon CTn341. J Bacteriol 2005;187:2858–2869 [CrossRef][PubMed]
    [Google Scholar]
  62. Kuwahara T, Yamashita A, Hirakawa H, Nakayama H, Toh H et al. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci USA 2004;101:14919–14924 [CrossRef][PubMed]
    [Google Scholar]
  63. Lanka E, Wilkins BM. DNA processing reactions in bacterial conjugation. Annu Rev Biochem 1995;64:141–169 [CrossRef][PubMed]
    [Google Scholar]
  64. Malanowska K, Salyers AA, Gardner JF. Characterization of a conjugative transposon integrase, IntDOT. Mol Microbiol 2006;60:1228–1240 [CrossRef]
    [Google Scholar]
  65. Blakely G, May G, Mcculloch R, Arciszewska LK, Burke M et al. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 1993;75:351–361 [CrossRef]
    [Google Scholar]
  66. Whittle G, Shoemaker NB, Salyers AA. Characterization of genes involved in modulation of conjugal transfer of the bacteroides conjugative transposon CTnDOT. J Bacteriol 2002;184:3839–3847 [CrossRef]
    [Google Scholar]
  67. Stevens AM, Shoemaker NB, Li LY, Salyers AA. Tetracycline regulation of genes on Bacteroides conjugative transposons. J Bacteriol 1993;175:6134–6141 [CrossRef]
    [Google Scholar]
  68. Bonheyo G, Graham D, Shoemaker NB, Salyers AA. Transfer region of a Bacteroides conjugative transposon, CTnDOT. Plasmid 2001;45:41–51 [CrossRef]
    [Google Scholar]
  69. Whittle G, Hund BD, Shoemaker NB, Salyers AA. Characterization of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT. Appl Environ Microbiol 2001;67:3488–3495 [CrossRef][PubMed]
    [Google Scholar]
  70. Cheng Q, Sutanto Y, Shoemaker NB, Gardner JF, Salyers AA. Identification of genes required for excision of CTnDOT, a Bacteroides conjugative transposon. Mol Microbiol 2001;41:625–632 [CrossRef]
    [Google Scholar]
  71. Park J, Salyers AA. Characterization of the Bacteroides CTnDOT regulatory protein RteC. J Bacteriol 2011;193:91–97 [CrossRef][PubMed]
    [Google Scholar]
  72. Keeton CM, Hopp CM, Yoneji S, Gardner JF. Interactions of the excision proteins of CTnDOT in the attR intasome. Plasmid 2013;70:190–200 [CrossRef]
    [Google Scholar]
  73. Keeton CM, Park J, Wang G-R, Hopp CM, Shoemaker NB et al. The excision proteins of CTnDOT positively regulate the transfer operon. Plasmid 2013;69:172–179 [CrossRef]
    [Google Scholar]
  74. Peed L, Parker AC, Smith CJ. Genetic and functional analyses of the mob operon on conjugative transposon CTn341 from Bacteroides spp. J Bacteriol 2010;192:4643–4650 [CrossRef][PubMed]
    [Google Scholar]
  75. Buckwold SL, Shoemaker NB, Sears CL, Franco AA. Identification and characterization of conjugative transposons CTn86 and CTn9343 in Bacteroides fragilis strains. Appl Environ Microbiol 2007;73:53–63 [CrossRef][PubMed]
    [Google Scholar]
  76. Wooley JC, Godzik A, Friedberg I. A primer on metagenomics. PLoS Comput Biol 2010;6:e100066713 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000136
Loading
/content/journal/mgen/10.1099/mgen.0.000136
Loading

Data & Media loading...

Supplementary File 1

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error