1887

Abstract

doi: 10.1099/mgen.0.000125.001.

Anoxygenicphotosynthetic prokaryotes have simplified photosystems that represent ancient lineages that predate the more complex oxygen evolving photosystems present in cyanobacteria and chloroplasts. These organisms thrive under illuminated anaerobic photosynthetic conditions, but also have the ability to grow under dark aerobic respiratory conditions. This study provides a detailed snapshot of transcription ground states of both dark aerobic and anaerobic photosynthetic growth modes in the purple photosynthetic bacterium Rhodobactercapsulatus. Using 18 biological replicates for aerobic and photosynthetic states, we observed that 1834 genes (53 % of the genome) exhibited altered expression between aerobic and anaerobic growth. In comparison with aerobically grown cells, photosynthetically grown anaerobic cells showed decreased transcription of genes for cobalamin biosynthesis (−45 %), iron transport and homeostasis (−42 %), motility (−32 %), and glycolysis (−34 %). Conversely and more intuitively, the expression of genes involved in carbon fixation (547 %), bacteriochlorophyll biosynthesis (162 %) and carotenogenesis (114 %) were induced. We also analysed the relative contributions of known global redox transcription factors RegA, FnrL and CrtJ in regulating aerobic and anaerobic growth. Approximately 50 % of differentially expressed genes (913 of 1834) were affected by a deletion of RegA, while 33 % (598 out of 1834) were affected by FnrL, and just 7 % (136 out of 1834) by CrtJ. Numerous genes were also shown to be controlled by more than one redox responding regulator.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000125
2017-07-08
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/9/mgen000125.html?itemId=/content/journal/mgen/10.1099/mgen.0.000125&mimeType=html&fmt=ahah

References

  1. Madigan MT, Jung DO. An overview of purple bacteria: systematics, physiology, and habitats Hunter CN, Daldal F, Thurnauer MC, Beatty JT. The Purple Phototrophic Bacteria Dordrecht: Springer Netherlands; 2009;1–15
    [Google Scholar]
  2. Zhu L, Yu H, Liu Y, Qi H, Xu X. Optimization for extracellular polymeric substances extraction of microbial aggregates. Water Sci Technol 2015;71:1106–1112 [CrossRef][PubMed]
    [Google Scholar]
  3. Yan L, Liu Y, Wen Y, Ren Y, Hao G et al. Role and significance of extracellular polymeric substances from granular sludge for simultaneous removal of organic matter and ammonia nitrogen. Bioresour Technol 2015;179:460–466 [CrossRef][PubMed]
    [Google Scholar]
  4. Galindo E, Peña C, Núñez C, Segura D, Espín G. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb Cell Fact 2007;6:7 [CrossRef][PubMed]
    [Google Scholar]
  5. Leaf TA, Srienc F. Metabolic modeling of polyhydroxybutyrate biosynthesis. Biotechnol Bioeng 1998;57:557–570 [CrossRef][PubMed]
    [Google Scholar]
  6. Beller HR, Letain TE, Chakicherla A, Kane SR, Legler TC et al. Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. J Bacteriol 2006;188:7005–7015 [CrossRef][PubMed]
    [Google Scholar]
  7. Callister SJ, Nicora CD, Zeng X, Roh JH, Dominguez MA et al. Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes. J Microbiol Methods 2006;67:424–436 [CrossRef][PubMed]
    [Google Scholar]
  8. Arai H, Roh JH, Kaplan S. Transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2008;190:286–299 [CrossRef][PubMed]
    [Google Scholar]
  9. Imam S, Yilmaz S, Sohmen U, Gorzalski AS, Reed JL et al. iRsp1095: a genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network. BMC Syst Biol 2011;5:116 [CrossRef][PubMed]
    [Google Scholar]
  10. Imam S, Noguera DR, Donohue TJ. Global analysis of photosynthesis transcriptional regulatory networks. PLoS Genet 2014;10:e1004837 [CrossRef][PubMed]
    [Google Scholar]
  11. Lin M, Lucas HC Jr, Shmueli G. Too big to fail: large samples and the p-value problem. Inf Syst Res 2013;24:906–917
    [Google Scholar]
  12. Schindel HS, Bauer CE. The RegA regulon exhibits variability in response to altered growth conditions and differs markedly between Rhodobacter species. Microb Genom 2016;2:e000081 [CrossRef][PubMed]
    [Google Scholar]
  13. Kumka JE, Bauer CE. Analysis of the FnrL regulon in Rhodobacter capsulatus reveals limited regulon overlap with orthologues from Rhodobacter sphaeroides and Escherichia coli. BMC Genomics 2015;16:895 [CrossRef][PubMed]
    [Google Scholar]
  14. Fang M, Bauer CE. The vitamin B12-dependent photoreceptor AerR relieves photosystem gene repression by extending the interaction of CrtJ with photosystem promoters. MBio 2017;8:e00261-17 [CrossRef][PubMed]
    [Google Scholar]
  15. Willett J, Smart JL, Bauer CE. RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus. J Bacteriol 2007;189:7765–7773 [CrossRef][PubMed]
    [Google Scholar]
  16. Cheng Z, Li K, Hammad LA, Karty JA, Bauer CE. Vitamin B12 regulates photosystem gene expression via the CrtJ antirepressor AerR in Rhodobacter capsulatus. Mol Microbiol 2014;91:649–664 [CrossRef][PubMed]
    [Google Scholar]
  17. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002;30:e36 [CrossRef][PubMed]
    [Google Scholar]
  18. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC et al. Primer3 – new capabilities and interfaces. Nucleic Acids Res 2012;40:e115 [CrossRef][PubMed]
    [Google Scholar]
  19. Myers KS, Yan H, Ong IM, Chung D, Liang K et al. Genome-scale analysis of Escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet 2013;9:e1003565 [CrossRef][PubMed]
    [Google Scholar]
  20. Youvan DC, Bylina EJ, Alberti M, Begusch H, Hearst JE. Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata. Cell 1984;37:949–957 [CrossRef][PubMed]
    [Google Scholar]
  21. Youvan DC, Ismail S. Light-harvesting II (B800-B850 complex) structural genes from Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 1985;82:58–62 [CrossRef][PubMed]
    [Google Scholar]
  22. Bollivar DW, Bauer CE. Association of tetrapyrrole intermediates in the bacteriochlorophyll a biosynthetic pathway with the major outer-membrane porin protein of Rhodobacter capsulatus. Biochem J 1992;282:471–476[PubMed]
    [Google Scholar]
  23. Biel AJ. Characterization of a coproporphyrin-protein complex from Rhodobacter capsulatus. FEMS Microbiol Lett 1991;65:43–47 [CrossRef][PubMed]
    [Google Scholar]
  24. Oelze J, Drews G. Die ausscheidung von partikelgebundenen bacteriochlorophyllvorstufen durch die mutante F9 von Rhodospirillum rubrum. Archiv Mikrobiol 1970;73:19–33 [CrossRef]
    [Google Scholar]
  25. Drews G, Leutiger I, Ladwig R. Production of protochlorophyll, protopheophytin, and bacteriochlorophyll by the mutant A1a of Rhodopseudomonas capsulata. Archiv Mikrobiol 1971;76:349–363 [CrossRef]
    [Google Scholar]
  26. Drews G. Composition of a protochlorophyll-protopheophytin-complex, excreted by mutant strains of Rhodopseudomonas capsulata, in comparison with the photosynthetic apparatus. Archiv Mikrobiol 1974;100:397–407 [CrossRef]
    [Google Scholar]
  27. Richards WR, Wallace RB, Tsao MS, Ho E. The nature of a pigment-protein complex excreted from mutants of Rhodopseudomonas sphaeroides. Biochemistry 1975;14:5554–5561 [CrossRef][PubMed]
    [Google Scholar]
  28. Pradel J, Clement-Metral JD. A 4-vinylprotochlorophyllide complex accumulated by "phofil" mutant of Rhodopseudomonas spheroides. An authentic intermediate in the development of the photosynthetic apparatus. Biochim Biophys Acta 1976;430:253–264 [CrossRef][PubMed]
    [Google Scholar]
  29. Willows RD, Kriegel AM. Biosynthesis of bacteriochlorophylls in purple bacteria Hunter CN, Daldal F, Thurnauer MC, Beatty JT. The Purple Phototrophic Bacteria Dordrecht: Springer; 2009;57–79
    [Google Scholar]
  30. Takaichi S. Distribution and biosynthesis of carotenoids Hunter CN, Daldal F, Thurnauer MC, Beatty JT. The Purple Phototrophic Bacteria Dordrecht: Springer; 2009;97–117
    [Google Scholar]
  31. Young DA, Bauer CE, Williams JC, Marrs BL. Genetic evidence for superoperonal organization of genes for photosynthetic pigments and pigment-binding proteins in Rhodobacter capsulatus. Mol Gen Genet 1989;218:1–12 [CrossRef][PubMed]
    [Google Scholar]
  32. Sganga MW, Bauer CE. Regulatory factors controlling photosynthetic reaction center and light-harvesting gene expression in Rhodobacter capsulatus. Cell 1992;68:945–954 [CrossRef][PubMed]
    [Google Scholar]
  33. Ponnampalam SN, Buggy JJ, Bauer CE. Characterization of an aerobic repressor that coordinately regulates bacteriochlorophyll, carotenoid, and light harvesting-II expression in Rhodobacter capsulatus. J Bacteriol 1995;177:2990–2997 [CrossRef][PubMed]
    [Google Scholar]
  34. Rochaix JD. Regulation of photosynthetic electron transport. Biochim Biophys Acta 2011;1807:375–383 [CrossRef][PubMed]
    [Google Scholar]
  35. Miyake J, Kawamura S. Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides. Int J Hydrogen Energy 1987;12:147–149 [CrossRef]
    [Google Scholar]
  36. Kontur WS, Ziegelhoffer EC, Spero MA, Imam S, Noguera DR et al. Pathways involved in reductant distribution during photobiological H2 production by Rhodobacter sphaeroides. Appl Environ Microbiol 2011;77:7425–7429 [CrossRef][PubMed]
    [Google Scholar]
  37. Wang S, Deng K, Zaremba S, Deng X, Lin C et al. Transcriptomic response of Escherichia coli O157:H7 to oxidative stress. Appl Environ Microbiol 2009;75:6110–6123 [CrossRef][PubMed]
    [Google Scholar]
  38. Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J Bacteriol 2006;188:8044–8053 [CrossRef][PubMed]
    [Google Scholar]
  39. Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus Beatty JT. Genome Evolution of Photosynthetic Bacteria. Advances in Botanical Researchvol. 66. Cambridge, MA:: Academic Press; 2013;289–326
    [Google Scholar]
  40. Zappa S, Bauer CE. The maintenance of iron homeostasis among prokaryotic phototrophs Hallenbeck PC. Modern Topics in the Phototrophic Prokaryotes: Metabolism, Bioenergetics, and Omics Cham: Springer International Publishing; 2017;123–161
    [Google Scholar]
  41. Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol Rev 2003;27:215–237 [CrossRef][PubMed]
    [Google Scholar]
  42. Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep 2010;27:637–657 [CrossRef][PubMed]
    [Google Scholar]
  43. Sandy M, Butler A. Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 2009;109:4580–4595 [CrossRef][PubMed]
    [Google Scholar]
  44. Krewulak KD, Vogel HJ. TonB or not TonB: is that the question?. Biochem Cell Biol 2011;89:87–97 [CrossRef][PubMed]
    [Google Scholar]
  45. Köster W. ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res Microbiol 2001;152:291–301 [CrossRef][PubMed]
    [Google Scholar]
  46. Fetherston JD, Bertolino VJ, Perry RD. YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol 1999;32:289–299 [CrossRef][PubMed]
    [Google Scholar]
  47. Choi JY, Sifri CD, Goumnerov BC, Rahme LG, Ausubel FM et al. Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis. J Bacteriol 2002;184:952–961 [CrossRef][PubMed]
    [Google Scholar]
  48. Parrow NL, Fleming RE, Minnick MF. Sequestration and scavenging of iron in infection. Infect Immun 2013;81:3503–3514 [CrossRef][PubMed]
    [Google Scholar]
  49. Bird LJ, Coleman ML, Newman DK. Iron and copper act synergistically to delay anaerobic growth of bacteria. Appl Environ Microbiol 2013;79:3619–3627 [CrossRef][PubMed]
    [Google Scholar]
  50. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957;49:25–68 [CrossRef][PubMed]
    [Google Scholar]
  51. Fujita Y, Yamakawa H. Biochemistry of chlorophyll biosynthesis in photosynthetic prokaryotes Hallenbeck PC. Modern Topics in the Phototrophic Prokaryotes: Metabolism, Bioenergetics, and Omics Cham: Springer International Publishing; 2017;67–122
    [Google Scholar]
  52. Boldareva-Nuianzina EN, Bláhová Z, Sobotka R, Koblízek M. Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria. Appl Environ Microbiol 2013;79:2596–2604 [CrossRef][PubMed]
    [Google Scholar]
  53. Ouchane S, Steunou AS, Picaud M, Astier C. Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system. J Biol Chem 2004;279:6385–6394 [CrossRef][PubMed]
    [Google Scholar]
  54. Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T et al. X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 2010;465:110–114 [CrossRef][PubMed]
    [Google Scholar]
  55. Fujita Y, Bauer CE. Reconstitution of light-independent protochlorophyllide reductase from purified BchL and BchN-BchB subunits. In vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme. J Biol Chem 2000;275:23583–23588 [CrossRef][PubMed]
    [Google Scholar]
  56. Biel AJ. Oxygen-regulated steps in the Rhodobacter capsulatus tetrapyrrole biosynthetic pathway. J Bacteriol 1992;174:5272–5274 [CrossRef][PubMed]
    [Google Scholar]
  57. Layer G, Moser J, Heinz DW, Jahn D, Schubert WD. Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of radical SAM enzymes. EMBO J 2003;22:6214–6224 [CrossRef][PubMed]
    [Google Scholar]
  58. McGoldrick HM, Roessner CA, Raux E, Lawrence AD, Mclean KJ et al. Identification and characterization of a novel vitamin B12 (cobalamin) biosynthetic enzyme (CobZ) from Rhodobacter capsulatus, containing flavin, heme, and Fe-S cofactors. J Biol Chem 2005;280:1086–1094 [CrossRef][PubMed]
    [Google Scholar]
  59. Marrs B, Gest H. Genetic mutations affecting the respiratory electron-transport system of the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol 1973;114:1045–1051[PubMed]
    [Google Scholar]
  60. La Monica RF, Marrs BL. The branched respiratory system of photosynthetically grown Rhodopseudomonas capsulata. Biochim Biophys Acta 1976;423:431–439 [CrossRef][PubMed]
    [Google Scholar]
  61. Ekici S, Pawlik G, Lohmeyer E, Koch HG, Daldal F. Biogenesis of cbb 3-type cytochrome c oxidase in Rhodobacter capsulatus. Biochim Biophys Acta 2012;1817:898–910 [CrossRef][PubMed]
    [Google Scholar]
  62. Swem LR, Elsen S, Bird TH, Swem DL, Koch HG et al. The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus. J Mol Biol 2001;309:121–138 [CrossRef][PubMed]
    [Google Scholar]
  63. Myllykallio H, Drepper F, Mathis P, Daldal F. Membrane-anchored cytochrome cy mediated microsecond time range electron transfer from the cytochrome bc1 complex to the reaction center in Rhodobacter capsulatus. Biochemistry 1998;37:5501–5510 [CrossRef][PubMed]
    [Google Scholar]
  64. Oztürk Y, Lee DW, Mandaci S, Osyczka A, Prince RC et al. Soluble variants of Rhodobacter capsulatus membrane-anchored cytochrome cy are efficient photosynthetic electron carriers. J Biol Chem 2008;283:13964–13972 [CrossRef][PubMed]
    [Google Scholar]
  65. Schobert M, Görisch H. A soluble two-component regulatory system controls expression of quinoprotein ethanol dehydrogenase (QEDH) but not expression of cytochrome c 550 of the ethanol-oxidation system in Pseudomonas aeruginosa. Microbiology 2001;147:363–372 [CrossRef][PubMed]
    [Google Scholar]
  66. McCrindle SL, Kappler U, Mcewan AG. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv Microb Physiol 2005;50:147–198 [CrossRef][PubMed]
    [Google Scholar]
  67. Cheng Z, Wu J, Setterdahl A, Reddie K, Carroll K et al. Activity of the tetrapyrrole regulator CrtJ is controlled by oxidation of a redox active cysteine located in the DNA binding domain. Mol Microbiol 2012;85:734–746 [CrossRef][PubMed]
    [Google Scholar]
  68. Inoue K, Kouadio JL, Mosley CS, Bauer CE. Isolation and in vitro phosphorylation of sensory transduction components controlling anaerobic induction of light harvesting and reaction center gene expression in Rhodobacter capsulatus. Biochemistry 1995;34:391–396 [CrossRef][PubMed]
    [Google Scholar]
  69. Mosley CS, Suzuki JY, Bauer CE. Identification and molecular genetic characterization of a sensor kinase responsible for coordinately regulating light harvesting and reaction center gene expression in response to anaerobiosis. J Bacteriol 1995;177:3359 [CrossRef][PubMed]
    [Google Scholar]
  70. Du S, Bird TH, Bauer CE. DNA binding characteristics of RegA. A constitutively active anaerobic activator of photosynthesis gene expression in Rhodobacter capsulatus. J Biol Chem 1998;273:18509–18513[PubMed]
    [Google Scholar]
  71. Bird TH, Du S, Bauer CE. Autophosphorylation, phosphotransfer, and DNA-binding properties of the RegB/RegA two-component regulatory system in Rhodobacter capsulatus. J Biol Chem 1999;274:16343–16348 [CrossRef][PubMed]
    [Google Scholar]
  72. Swem LR, Gong X, Yu CA, Bauer CE. Identification of a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegB. J Biol Chem 2006;281:6768–6775 [CrossRef][PubMed]
    [Google Scholar]
  73. Wu J, Bauer CE. RegB kinase activity is controlled in part by monitoring the ratio of oxidized to reduced ubiquinones in the ubiquinone pool. MBio 2010;1:e00272-10 [CrossRef][PubMed]
    [Google Scholar]
  74. Swem LR, Kraft BJ, Swem DL, Setterdahl AT, Masuda S et al. Signal transduction by the global regulator RegB is mediated by a redox-active cysteine. EMBO J 2003;22:4699–4708 [CrossRef][PubMed]
    [Google Scholar]
  75. Wu J, Cheng Z, Reddie K, Carroll K, Hammad LA et al. RegB kinase activity is repressed by oxidative formation of cysteine sulfenic acid. J Biol Chem 2013;288:4755–4762 [CrossRef][PubMed]
    [Google Scholar]
  76. Elsen S, Dischert W, Colbeau A, Bauer CE. Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB-RegA two-component regulatory system. J Bacteriol 2000;182:2831–2837 [CrossRef][PubMed]
    [Google Scholar]
  77. Dubbs JM, Bird TH, Bauer CE, Tabita FR. Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbbI promoter-operator region. J Biol Chem 2000;275:19224–19230 [CrossRef][PubMed]
    [Google Scholar]
  78. Masuda S, Dong C, Swem D, Setterdahl AT, Knaff DB et al. Repression of photosynthesis gene expression by formation of a disulfide bond in CrtJ. Proc Natl Acad Sci USA 2002;99:7078–7083 [CrossRef][PubMed]
    [Google Scholar]
  79. Swem DL, Bauer CE. Coordination of ubiquinol oxidase and cytochrome cbb3 oxidase expression by multiple regulators in Rhodobacter capsulatus. J Bacteriol 2002;184:2815–2820 [CrossRef][PubMed]
    [Google Scholar]
  80. Fleischhacker AS, Kiley PJ. Iron-containing transcription factors and their roles as sensors. Curr Opin Chem Biol 2011;15:335–341 [CrossRef][PubMed]
    [Google Scholar]
  81. Peuser V, Remes B, Klug G. Role of the Irr protein in the regulation of iron metabolism in Rhodobacter sphaeroides. PLoS One 2012;7:e42231 [CrossRef][PubMed]
    [Google Scholar]
  82. Kiley PJ, Beinert H. Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol Rev 1998;22:341–352 [CrossRef][PubMed]
    [Google Scholar]
  83. Khoroshilova N, Popescu C, Münck E, Beinert H, Kiley PJ. Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc Natl Acad Sci USA 1997;94:6087–6092 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000125
Loading
/content/journal/mgen/10.1099/mgen.0.000125
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error