1887

Abstract

Pathogen-injected, direct transcriptional activators of host genes, TAL (transcription activator-like) effectors play determinative roles in plant diseases caused by spp. A large domain of nearly identical, 33–35 aa repeats in each protein mediates DNA recognition. This modularity makes TAL effectors customizable and thus important also in biotechnology. However, the repeats render TAL effector () genes nearly impossible to assemble using next-generation, short reads. Here, we demonstrate that long-read, single molecule real-time (SMRT) sequencing solves this problem. Taking an ensemble approach to first generate local, gene contigs, we correctly assembled the genomes of two strains of the rice pathogen completed previously using the Sanger method and even identified errors in those references. Sequencing two more strains revealed a dynamic genome structure and a striking plasticity in gene content. Our results pave the way for population-level studies to inform resistance breeding, improve biotechnology and probe TAL effector evolution.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the source is credited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000032
2015-10-13
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/1/4/mgen000032.html?itemId=/content/journal/mgen/10.1099/mgen.0.000032&mimeType=html&fmt=ahah

References

  1. Adhikari T. B., Vera Cruz C. M., Zhang Q., Nelson R. J., Skinner D. Z., Mew T. W., Leach J. E. 1995; Genetic diversity of Xanthomonas oryzae pv. oryzae in Asia. Appl Environ Microbiol 61:966–971[PubMed]
    [Google Scholar]
  2. Alexander D. 2013; Quiver: modeling consensus accuracy. https://github.com/dalexander/QuiverModeling/raw/master/slides.pdf
    [Google Scholar]
  3. Antony G., Zhou J., Huang S., Li T., Liu B., White F., Yang B. 2010; Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3 . Plant Cell 22:3864–3876 [View Article][PubMed]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. editors 1994 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  5. Bai J., Choi S. H., Ponciano G., Leung H., Leach J. E. 2000; Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol Plant Microbe Interact 13:1322–1329 [View Article][PubMed]
    [Google Scholar]
  6. Bart R., Cohn M., Kassen A., McCallum E. J., Shybut M., Petriello A., Krasileva K., Dahlbeck D., Medina C., other authors. 2012; High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proc Natl Acad Sci U S A 109:E1972–E1979 [View Article][PubMed]
    [Google Scholar]
  7. Boch J., Bonas U. 2010; Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436 [View Article][PubMed]
    [Google Scholar]
  8. Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., Lahaye T., Nickstadt A., Bonas U. 2009; Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512 [View Article][PubMed]
    [Google Scholar]
  9. Bogdanove A. J., Schornack S., Lahaye T. 2010; TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401 [View Article][PubMed]
    [Google Scholar]
  10. Bogdanove A. J., Koebnik R., Lu H., Furutani A., Angiuoli S. V., Patil P. B., Van Sluys M. A., Ryan R. P., Meyer D. F., other authors. 2011; Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol 193:5450–5464 [View Article][PubMed]
    [Google Scholar]
  11. Cernadas R. A., Doyle E. L., Niño-Liu D. O., Wilkins K. E., Bancroft T., Wang L., Schmidt C. L., Caldo R., Yang B., other authors. 2014; Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathog 10:e1003972 [View Article][PubMed]
    [Google Scholar]
  12. Chaisson M. J., Tesler G. 2012; Mapping single molecule sequencing reads using basic local alignment with successive refinement (blasr): application and theory. BMC Bioinformatics 13:238 [View Article][PubMed]
    [Google Scholar]
  13. Chakrabarty P. K., Chavhan R. L., Ghosh A., Gabriel D. W. 2010; Rapid and efficient protocols for throughput extraction of high quality plasmid DNA from strains of Xanthomonas axonopodis pv. malvacearum Escherichia coli . J Plant Biochem Biotechnol 19:99–102 [View Article]
    [Google Scholar]
  14. Chin J. 2014; Generate assembly graph from Celera® assembler. http://dx.doi.org/10.6084/m9.figshare.1038834
    [Google Scholar]
  15. Chin C. S., Alexander D. H., Marks P., Klammer A. A., Drake J., Heiner C., Clum A., Copeland A., Huddleston J., other authors. 2013; Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569 [View Article][PubMed]
    [Google Scholar]
  16. Choi S. H., Leach J. E. 1994a; Identification of the XorII methyltransferase gene and a vsr homolog from Xanthomonas oryzae pv. oryzae . Mol Gen Genet 244:383–390 [View Article][PubMed]
    [Google Scholar]
  17. Choi S. H., Leach J. E. 1994b; Genetic manipulation of Xanthomonas oryzae pv. oryzae . Int Rice Res Notes 19:31–32
    [Google Scholar]
  18. Deng D., Yan C., Pan X., Mahfouz M., Wang J., Zhu J. K., Shi Y., Yan N. 2012; Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723 [View Article][PubMed]
    [Google Scholar]
  19. Doyle E. L., Booher N. J., Standage D. S., Voytas D. F., Brendel V. P., Vandyk J. K., Bogdanove A. J. 2012; TAL Effector-Nucleotide Targeter (tale-nt) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40:(W1)W117–W122 [View Article][PubMed]
    [Google Scholar]
  20. Doyle E. L., Stoddard B. L., Voytas D. F., Bogdanove A. J. 2013; TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Biol 23:390–398 [View Article][PubMed]
    [Google Scholar]
  21. Eid J., Fehr A., Gray J., Luong K., Lyle J., Otto G., Peluso P., Rank D., Baybayan P., other authors, Real-time D. N. A. 2009; sequencing from single polymerase molecules. Science 323:133–138 [View Article][PubMed]
    [Google Scholar]
  22. English A. C., Salerno W. J., Reid J. G. 2014; PBHoney: identifying genomic variants via long-read discordance and interrupted mapping. BMC Bioinformatics 15:180 [View Article][PubMed]
    [Google Scholar]
  23. Flusberg B. A., Webster D. R., Lee J. H., Travers K. J., Olivares E. C., Clark T. A., Korlach J., Turner S. W. 2010; Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465 [View Article][PubMed]
    [Google Scholar]
  24. Guo X., Zheng S., Dang H., Pace R. G., Stonebraker J. R., Jones C. D., Boellmann F., Yuan G., Haridass P., other authors. 2014; Genome reference and sequence variation in the large repetitive central exon of human MUC5AC. Am J Respir Cell Mol Biol 50:223–232[PubMed]
    [Google Scholar]
  25. Hajri A., Brin C., Zhao S., David P., Feng J. X., Koebnik R., Szurek B., Verdier V., Boureau T., Poussier S. 2012; Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of Xanthomonas oryzae . Mol Plant Pathol 13:288–302 [View Article][PubMed]
    [Google Scholar]
  26. Herbers K., Conradsstrauch J., Bonas U. 1992; Race-specificity of plant-resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature 356:172–174 [View Article]
    [Google Scholar]
  27. Hopkins C. M., White F. F., Choi S. H., Guo A., Leach J. E. 1992; Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae . Mol Plant Microbe Interact 5:451–459 [View Article][PubMed]
    [Google Scholar]
  28. Hu Y., Zhang J., Jia H., Sosso D., Li T., Frommer W. B., Yang B., White F. F., Wang N., Jones J. B. 2014; Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci U S A 111:E521–E529 [View Article][PubMed]
    [Google Scholar]
  29. Ji Z. Y., Zakria M., Zou L. F., Xiong L., Li Z., Ji G. H., Chen G. Y. 2014; Genetic diversity of transcriptional activator-like effector genes in Chinese isolates of Xanthomonas oryzae pv. oryzicola . Phytopathology 104:672–682 [View Article][PubMed]
    [Google Scholar]
  30. Koren S., Harhay G. P., Smith T. P., Bono J. L., Harhay D. M., Mcvey S. D., Radune D., Bergman N. H., Phillippy A. M. 2013; Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol 14:R101 [View Article][PubMed]
    [Google Scholar]
  31. Koren S., Treangen T. J., Hill C. M., Pop M., Phillippy A. M. 2014; Automated ensemble assembly and validation of microbial genomes. BMC Bioinformatics 15:126 [View Article][PubMed]
    [Google Scholar]
  32. Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S. J., Marra M. A. 2009; Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645 [View Article][PubMed]
    [Google Scholar]
  33. Kurtz S., Phillippy A., Delcher A. L., Smoot M., Shumway M., Antonescu C., Salzberg S. L. 2004; Versatile and open software for comparing large genomes. Genome Biol 5:R12 [View Article][PubMed]
    [Google Scholar]
  34. Lee Y. A., Chiu S. P. 1998; IS1403 and IS1404: analysis and distribution of two new insertion sequences in Xanthomonas campestris . Bot Bull Acad Sin 39:231–239
    [Google Scholar]
  35. Lee B. M., Park Y. J., Park D. S., Kang H. W., Kim J. G., Song E. S., Park I. C., Yoon U. H., Hahn J. H., other authors. 2005; The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33:577–586 [View Article][PubMed]
    [Google Scholar]
  36. Lee C. N., Tseng T. T., Chang H. C., Lin J. W., Weng S. F. 2014; Genomic sequence of temperate phage Smp131 of Stenotrophomonas maltophilia that has similar prophages in xanthomonads. BMC Microbiol 14:17 [View Article][PubMed]
    [Google Scholar]
  37. Li Z., Zou L., Ye G., Xiong L., Ji Z., Zakria M., Hong N., Wang G., Chen G. 2014; A potential disease susceptibility gene CsLOB of citrus is targeted by a major virulence effector PthA of Xanthomonas citri subsp. citri . Mol Plant 7:912–915 [View Article][PubMed]
    [Google Scholar]
  38. Liang B., Yu T. G., Guo B., Yang C., Dai L., Shen D. L. 2004; Cloning and characterization of a novel avirulence gene (arp3) from Xanthomonas oryzae pv. oryzae . DNA Seq 15:110–117 [View Article][PubMed]
    [Google Scholar]
  39. Lynch K. H., Seed K. D., Stothard P., Dennis J. J. 2010; Inactivation of Burkholderia cepacia complex phage KS9 gp41 identifies the phage repressor and generates lytic virions. J Virol 84:1276–1288 [View Article][PubMed]
    [Google Scholar]
  40. Mak A. N., Bradley P., Cernadas R. A., Bogdanove A. J., Stoddard B. L. 2012; The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719 [View Article][PubMed]
    [Google Scholar]
  41. Mew T. W., Vera Cruz C. M. 1985; Virulence of Xanthomonas campestris. pv oryzae in the Philippines. Phytopathology 75:1316
    [Google Scholar]
  42. Mew T. W., Vera Cruz C. M., Medalla E. S. 1992; Changes in race frequency of Xanthomonas oryzae pv. oryzae in response to rice cultivars planted in the Philippines. Plant Dis 76:1029–1032 [View Article]
    [Google Scholar]
  43. Mishra D., Vishnupriya M. R., Anil M. G., Konda K., Raj Y., Sonti R. V. 2013; Pathotype and genetic diversity amongst Indian isolates of Xanthomonas oryzae pv. oryzae . PLoS One 8:e81996[PubMed] [CrossRef]
    [Google Scholar]
  44. Moscou M. J., Bogdanove A. J. 2009; A simple cipher governs DNA recognition by TAL effectors. Science 326:1501 [View Article][PubMed]
    [Google Scholar]
  45. Mudgett M. B., Chesnokova O., Dahlbeck D., Clark E. T., Rossier O., Bonas U., Staskawicz B. J. 2000; Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. Proc Natl Acad Sci U S A 97:13324–13329 [View Article][PubMed]
    [Google Scholar]
  46. Myers E. W., Sutton G. G., Delcher A. L., Dew I. M., Fasulo D. P., Flanigan M. J., Kravitz S. A., Mobarry C. M., Reinert K. H. J., other authors. 2000; A whole-genome assembly of Drosophila . Science 287:2196–2204 [View Article][PubMed]
    [Google Scholar]
  47. Niño-Liu D. O., Ronald P. C., Bogdanove A. J. 2006; Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7:303–324 [View Article][PubMed]
    [Google Scholar]
  48. Ochiai H., Inoue Y., Takeya M., Sasaki A., Kaku H. 2005; Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Jpn Agric Res Q 39:275–287 [View Article]
    [Google Scholar]
  49. [Google Scholar]
  50. [Google Scholar]
  51. Pereira A. L., Carazzolle M. F., Abe V. Y., de Oliveira M. L., Domingues M. N., Silva J. C., Cernadas R. A., Benedetti C. E. 2014; Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response. BMC Genomics 15:157 [View Article][PubMed]
    [Google Scholar]
  52. Poulin L., Grygiel P., Magne M., Gagnevin L., Rodriguez R. L., Forero Serna N., Zhao S., El Rafii M., Dao S., other authors. 2014; A new multilocus variable-number tandem-repeat analysis tool for surveillance and local epidemiology of bacterial leaf blight and bacterial leaf streak of rice caused by Xanthomonas oryzae . Appl Environ Microbiol 81:688–698 [CrossRef]
    [Google Scholar]
  53. Richter A., Streubel J., Blücher C., Szurek B., Reschke M., Grau J., Boch J. 2014; A TAL effector repeat architecture for frameshift binding. Nat Commun 5:3447 [View Article][PubMed]
    [Google Scholar]
  54. Robinson J. T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E. S., Getz G., Mesirov J. P. 2011; Integrative genomics viewer. Nat Biotechnol 29:24–26 [View Article][PubMed]
    [Google Scholar]
  55. Roth J. R., Benson N., Galitski T., Haack K., Lawrence J. G., Miesel L. 1996; Rearrangements of the bacterial chromosome: formation and applications. In Escherichia coli Salmonella typhimurium: Cellular and Molecular Biology vol 2 pp 2256–2276Edited by Neidhardt F. C., Curtis R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  56. Ryba-White M., Sakthivel N., Yun C., White F., Leach J. E. 2005; Identification and characterization of IS1112 and IS1113 insertion element sequences in Xanthomonas oryzae pv. oryzae . DNA Seq 16:75–79 [View Article][PubMed]
    [Google Scholar]
  57. Salzberg S. L., Sommer D. D., Schatz M. C., Phillippy A. M., Rabinowicz P. D., Tsuge S., Furutani A., Ochiai H., Delcher A. L., other authors. 2008; Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9:204 [View Article][PubMed]
    [Google Scholar]
  58. Schornack S., Moscou M. J., Ward E. R., Horvath D. M. 2013; Engineering plant disease resistance based on TAL effectors. Annu Rev Phytopathol 51:383–406 [View Article][PubMed]
    [Google Scholar]
  59. Strauss T., van Poecke R. M., Strauss A., Römer P., Minsavage G. V., Singh S., Wolf C., Strauss A., Kim S., other authors. 2012; RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome. Proc Natl Acad Sci U S A 109:19480–19485 [View Article][PubMed]
    [Google Scholar]
  60. Summer E. J., Enderle C. J., Ahern S. J., Gill J. J., Torres C. P., Appel D. N., Black M. C., Young R., Gonzalez C. F. 2010; Genomic and biological analysis of phage Xfas53 and related prophages of Xylella fastidiosa . J Bacteriol 192:179–190 [View Article][PubMed]
    [Google Scholar]
  61. Szurek B., Rossier O., Hause G., Bonas U. 2002; Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol Microbiol 46:13–23 [View Article][PubMed]
    [Google Scholar]
  62. Thorvaldsdóttir H., Robinson J. T., Mesirov J. P. 2013; Integrative Genomics Viewer (igv): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192 [View Article][PubMed]
    [Google Scholar]
  63. Treangen T. J., Sommer D. D., Angly F. E., Koren S., Pop M. 2011; Next generation sequence assembly with amos . Curr Protoc Bioinformatics 11:11.08[PubMed]
    [Google Scholar]
  64. Triplett L. R., Hamilton J. P., Buell C. R., Tisserat N. A., Verdier V., Zink F., Leach J. E. 2011; Genomic analysis of Xanthomonas oryzae isolates from rice grown in the United States reveals substantial divergence from known X. oryzae pathovars. Appl Environ Microbiol 77:3930–3937 [View Article][PubMed]
    [Google Scholar]
  65. Vera Cruz C. M., Gosselé F., Kersters K., Segers P., Van den Mooter M., Swings J., De Ley J. 1984; Differentiation between Xanthomonas campestris pv. oryzae Xanthomonas campestris pv. oryzicola and the bacterial ‘brown blotch’ pathogen on rice by numerical analysis of phenotypic features and protein gel electrophoregrams. J Gen Microbiol 130:2983–2999[PubMed]
    [Google Scholar]
  66. Vera Cruz C. M., Bai J., Ona I., Leung H., Nelson R. J., Mew T. W., Leach J. E. 2000; Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proc Natl Acad Sci U S A 97:13500–13505 [View Article][PubMed]
    [Google Scholar]
  67. Wang C. L., Qin T. F., Yu H. M., Zhang X. P., Che J. Y., Gao Y., Zheng C. K., Yang B., Zhao K. J. 2014; The broad bacterial blight resistance of rice line CBB23 is triggered by a novel transcription activator-like (TAL) effector of Xanthomonas oryzae pv. oryzae . Mol Plant Pathol 15:333–341 [View Article][PubMed]
    [Google Scholar]
  68. Wilkins K. E., Booher N. J., Wang L., Bogdanove A. J. 2015; TAL effectors and activation of predicted host targets distinguish Asian from African strains of the rice pathogen Xanthomonas oryzae pv. oryzicola while strict conservation suggests universal importance of five TAL effectors. Front Plant Sci 6:536 [View Article][PubMed]
    [Google Scholar]
  69. Wonni I., Cottyn B., Detemmerman L., Dao S., Ouedraogo L., Sarra S., Tekete C., Poussier S., Corral R., other authors. 2014; Analysis of Xanthomonas oryzae pv. oryzicola population in Mali and Burkina Faso reveals a high level of genetic and pathogenic diversity. Phytopathology 104:520–531 [View Article][PubMed]
    [Google Scholar]
  70. Yang B., Zhu W., Johnson L. B., White F. F. 2000; The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein. Proc Natl Acad Sci U S A 97:9807–9812 [View Article][PubMed]
    [Google Scholar]
  71. Zhang Z., Schwartz S., Wagner L., Miller W. 2000; A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214 [View Article][PubMed]
    [Google Scholar]
  72. Zhao S., Poulin L., Rodriguez-R L. M., Serna N. F., Liu S. Y., Wonni I., Szurek B., Verdier V., Leach J. E., other authors. 2012; Development of a variable number of tandem repeats typing scheme for the bacterial rice pathogen Xanthomonas oryzae pv. oryzicola . Phytopathology 102:948–956 [View Article][PubMed]
    [Google Scholar]
  73. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S. 2011; phast: a fast phage search tool. Nucleic Acids Res 39:W347–W352 [View Article][PubMed]
    [Google Scholar]
  74. Bogdanove, A. J., Koebnik, R., Lu, H., Furutani, A., Angiuoli, S. V., Patil, P. B., Van Sluys, M. A., Ryan, R. P., Meyer & other authors. GenBank accession number CP003057.1 (2014).
  75. Booher, N. J., Carpenter, S. C. D., Sebra, R. P., Wang, L., Salzberg S. L., Leach, J. E. & Bogdanove A. J. Sequence Read Archive accession number SRX502906 (2015).
  76. Booher, N. J., Carpenter, S. C. D., Sebra, R. P., Wang, L., Salzberg S. L., Leach, J. E. & Bogdanove A. J. Sequence Read Archive accession number SRX502899 (2015).
  77. Booher, N. J., Carpenter, S. C. D., Sebra, R. P., Wang, L., Salzberg S. L., Leach, J. E. & Bogdanove A. J. GenBank accession number CP007221.1 (2015).
  78. Booher, N. J., Carpenter, S. C. D., Sebra, R. P., Wang, L., Salzberg S. L., Leach, J. E. & Bogdanove A. J. GenBank, GenBank accession number CP007166.1 (2015).
  79. Booher, N. J., Carpenter, S. C. D., Sebra, R. P., Wang, L., Salzberg S. L., Leach, J. E. & Bogdanove A. J. Sequence Read Archive accession number SRX502893 (2015).
  80. Booher, N. J., Carpenter, S. C. D., Sebra, R. P., Wang, L., Salzberg S. L., Leach, J. E. & Bogdanove A. J. Sequence Read Archive accession number SRX463048 (2015).
  81. Booher, N. J., Carpenter, S. C. D., Sebra, R. P., Wang, L., Salzberg S. L., Leach, J. E. & Bogdanove A. J. Sequence Read Archive accession number SRX1053794 (2015).
  82. Booher, N. J., Carpenter, S. C. D., Sebra, R. P., Wang, L., Salzberg S. L., Leach, J. E. & Bogdanove A. J. Sequence Read Archive accession number SRX1053696 (2015).
  83. Salzberg, S. L., Sommer, D. D., Schatz, M. C., Phillippy, A. M., Rabinowicz, P. D., Tsuge, S., Furutani, A., Ochiai, H., Delcher, A. L. & other authors. GenBank accession number CP000967.1 (2014).
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000032
Loading
/content/journal/mgen/10.1099/mgen.0.000032
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error