1887

Abstract

, the causative agent of plague, is best known for historical pandemics, but still actively causes disease in many parts of the world. is a recently derived clone of the pathogenic species , but is more associated with human infection. Numerous studies have documented genomic changes since the two species differentiated, although all of these studies used a relatively small sample set for defining these differences. In this study, we compared the complete genomic content between a diverse set of and genomes, and identified unique loci that could serve as diagnostic markers or for better understanding the evolution and pathogenesis of each group. Comparative genomics analyses also identified subtle variations in gene content between individual monophyletic clades within these species, based on a core genome single nucleotide polymorphism phylogeny that would have been undetected in a less comprehensive genome dataset. We also screened loci that were identified in other published studies as unique to either species and generally found a non-uniform distribution, suggesting that the assignment of these unique genes to either species should be re-evaluated in the context of current sequencing efforts. Overall, this study provides a high-resolution view into the genomic differences between and , demonstrating fine-scale differentiation and unique gene composition in both species.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000028
2015-08-03
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/mgen/1/2/mgen000028.html?itemId=/content/journal/mgen/10.1099/mgen.0.000028&mimeType=html&fmt=ahah

References

  1. Achtman M.. 2008; Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol62:53–70 [CrossRef][PubMed]
    [Google Scholar]
  2. Achtman M., Zurth K., Morelli G., Torrea G., Guiyoule A., Carniel E.. 1999; Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A96:14043–14048 [CrossRef][PubMed]
    [Google Scholar]
  3. Achtman M., Morelli G., Zhu P., Wirth T., Diehl I., Kusecek B., Vogler A.J., Wagner D.M., Allender C.J.. otherauthors 2004; Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci U S A101:17837–17842 [CrossRef][PubMed]
    [Google Scholar]
  4. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  5. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.. 1997; Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  6. Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S.. otherauthors 2012; SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  7. Benson D.A., Karsch-Mizrachi I., Clark K., Lipman D.J., Ostell J., Sayers E.W.. 2012; GenBank. Nucleic Acids Res40:(D1)D48–D53 [CrossRef][PubMed]
    [Google Scholar]
  8. Bonacorsi S.P., Scavizzi M.R., Guiyoule A., Amouroux J.H., Carniel E.. 1994; Assessment of a fluoroquinolone, three beta-lactams, two aminoglycosides, and a cycline in treatment of murine Yersinia pestis infection. Antimicrob Agents Chemother38:481–486 [CrossRef][PubMed]
    [Google Scholar]
  9. Brubaker R.R.. 1991; Factors promoting acute and chronic diseases caused by yersiniae. Clin Microbiol Rev4:309–324[PubMed]
    [Google Scholar]
  10. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Peña A.G., Goodrich J.K.. otherauthors 2010; qiime allows analysis of high-throughput community sequencing data. Nat Methods7:335–336 [CrossRef][PubMed]
    [Google Scholar]
  11. Chain P.S., Carniel E., Larimer F.W., Lamerdin J., Stoutland P.O., Regala W.M., Georgescu A.M., Vergez L.M., Land M.L.. otherauthors 2004; Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A101:13826–13831 [CrossRef][PubMed]
    [Google Scholar]
  12. Chain P.S., Hu P., Malfatti S.A., Radnedge L., Larimer F., Vergez L.M., Worsham P., Chu M.C., Andersen G.L.. 2006; Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen. J Bacteriol188:4453–4463 [CrossRef][PubMed]
    [Google Scholar]
  13. Cui Y., Yu C., Yan Y., Li D., Li Y., Jombart T., Weinert L.A., Wang Z., Guo Z.. otherauthors 2013; Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci U S A110:577–582 [CrossRef][PubMed]
    [Google Scholar]
  14. Delcher A.L., Salzberg S.L., Phillippy A.M.. 2003; Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics10:3.1–3.18
    [Google Scholar]
  15. DePristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., del Angel G., Rivas M.A.. otherauthors 2011; A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet43:491–498 [CrossRef][PubMed]
    [Google Scholar]
  16. Derbise A., Carniel E.. 2014; YpfΦ: a filamentous phage acquired by Yersinia pestis. Front Microbiol5:701 [CrossRef][PubMed]
    [Google Scholar]
  17. Derbise A., Chenal-Francisque V., Pouillot F., Fayolle C., Prévost M.C., Médigue C., Hinnebusch B.J., Carniel E.. 2007; A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Mol Microbiol63:1145–1157 [CrossRef][PubMed]
    [Google Scholar]
  18. Duan R., Liang J., Shi G., Cui Z., Hai R., Wang P., Xiao Y., Li K., Qiu H.. otherauthors 2014; Homology analysis of pathogenic Yersinia species Yersinia enterocolitica Yersinia pseudotuberculosis, and Yersinia pestis based on multilocus sequence typing. J Clin Microbiol52:20–29 [CrossRef][PubMed]
    [Google Scholar]
  19. Edgar R.C.. 2004; muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics5:113 [CrossRef][PubMed]
    [Google Scholar]
  20. Edgar R.C.. 2010; Search and clustering orders of magnitude faster than blast. Bioinformatics26:2460–2461 [CrossRef][PubMed]
    [Google Scholar]
  21. Engelthaler D.M., Hicks N.D., Gillece J.D., Roe C.C., Schupp J.M., Driebe E.M., Gilgado F., Carriconde F., Trilles L.. otherauthors 2014; Cryptococcus gattii in North American Pacific Northwest: whole-population genome analysis provides insights into species evolution and dispersal. MBio5:e01464–e01414 [CrossRef][PubMed]
    [Google Scholar]
  22. Farris J.S.. 1989; The retention index and the rescaled consistency index. Cladistics5:417–419 [CrossRef]
    [Google Scholar]
  23. Galimand M., Carniel E., Courvalin P.. 2006; Resistance of Yersinia pestis to antimicrobial agents. Antimicrob Agents Chemother50:3233–3236 [CrossRef][PubMed]
    [Google Scholar]
  24. Hu P., Elliott J., McCready P., Skowronski E., Garnes J., Kobayashi A., Brubaker R.R., Garcia E.. 1998; Structural organization of virulence-associated plasmids of Yersinia pestis. J Bacteriol180:5192–5202[PubMed]
    [Google Scholar]
  25. Hyatt D., Chen G.L., Locascio P.F., Land M.L., Larimer F.W., Hauser L.J.. 2010; Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11:119 [CrossRef][PubMed]
    [Google Scholar]
  26. Kent W.J.. 2002; blat - the blast-like alignment tool. Genome Res12:656–664 [CrossRef][PubMed]
    [Google Scholar]
  27. Koskiniemi S., Lamoureux J.G., Nikolakakis K.C., t'Kint de Roodenbeke C., Kaplan M.D., Low D.A., Hayes C.S.. 2013; Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A110:7032–7037 [CrossRef]
    [Google Scholar]
  28. Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A.. 2009; Circos: an information aesthetic for comparative genomics. Genome Res19:1639–1645 [CrossRef][PubMed]
    [Google Scholar]
  29. Letunic I., Bork P.. 2007; Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics23:127–128 [CrossRef][PubMed]
    [Google Scholar]
  30. Li H.. 2013; Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. http://arxiv.org/abs/1303.3997
    [Google Scholar]
  31. Li Y., Dai E., Cui Y., Li M., Zhang Y., Wu M., Zhou D., Guo Z., Dai X.. otherauthors 2008; Different region analysis for genotyping Yersinia pestis isolates from China. PLoS One3:e2166 [CrossRef][PubMed]
    [Google Scholar]
  32. Lillard J.W. Jr, Fetherston J.D., Pedersen L., Pendrak M.L., Perry R.D.. 1997; Sequence and genetic analysis of the hemin storage (hms) system of Yersinia pestis. Gene193:13–21 [CrossRef][PubMed]
    [Google Scholar]
  33. McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S.. otherauthors 2010; The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res20:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  34. Perry R.D., Fetherston J.D.. 1997; Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev10:35–66[PubMed]
    [Google Scholar]
  35. Pouillot F., Fayolle C., Carniel E.. 2008; Characterization of chromosomal regions conserved in Yersinia pseudotuberculosis and lost by Yersinia pestis. Infect Immun76:4592–4599 [CrossRef][PubMed]
    [Google Scholar]
  36. Quinlan A.R., Hall I.M.. 2010; BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics26:841–842 [CrossRef][PubMed]
    [Google Scholar]
  37. Radnedge L., Agron P.G., Worsham P.L., Andersen G.L.. 2002; Genome plasticity in Yersinia pestis. Microbiology148:1687–1698[PubMed]
    [Google Scholar]
  38. Rasko D.A., Myers G.S., Ravel J.. 2005; Visualization of comparative genomic analyses by blast score ratio. BMC Bioinformatics6:2 [CrossRef][PubMed]
    [Google Scholar]
  39. Rasko D.A., Rosovitz M.J., Myers G.S., Mongodin E.F., Fricke W.F., Gajer P., Crabtree J., Sebaihia M., Thomson N.R.. otherauthors 2008; The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol190:6881–6893 [CrossRef][PubMed]
    [Google Scholar]
  40. Ratovonjato J., Rajerison M., Rahelinirina S., Boyer S.. 2014; Yersinia pestis in Pulex irritans fleas during plague outbreak, Madagascar. Emerg Infect Dis20:1414–1415 [CrossRef][PubMed]
    [Google Scholar]
  41. Reuter S., Connor T.R., Barquist L., Walker D., Feltwell T., Harris S.R., Fookes M., Hall M.E., Petty N.K.. otherauthors 2014; Parallel independent evolution of pathogenicity within the genus Yersinia. Proc Natl Acad Sci U S A111:6768–6773 [CrossRef][PubMed]
    [Google Scholar]
  42. Rosqvist R., Bölin I., Wolf-Watz H.. 1988; Inhibition of phagocytosis in Yersinia pseudotuberculosis: a virulence plasmid-encoded ability involving the Yop2b protein. Infect Immun56:2139–2143[PubMed]
    [Google Scholar]
  43. Sahl J.W., Caporaso J.G., Rasko D.A., Keim P.. 2014; The large-scale blast score ratio (LS-BSR) pipeline: a method to rapidly compare genetic content between bacterial genomes. PeerJ2:e332 [CrossRef][PubMed]
    [Google Scholar]
  44. Schliep K.P.. 2011; phangorn: phylogenetic analysis in r. Bioinformatics27:592–593 [CrossRef][PubMed]
    [Google Scholar]
  45. Schubert S., Rakin A., Karch H., Carniel E., Heesemann J.. 1998; Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun66:480–485[PubMed]
    [Google Scholar]
  46. Sodeinde O.A., Subrahmanyam Y.V., Stark K., Quan T., Bao Y., Goguen J.D.. 1992; A surface protease and the invasive character of plague. Science258:1004–1007 [CrossRef][PubMed]
    [Google Scholar]
  47. Stamatakis A.. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  48. Sun Y.C., Jarrett C.O., Bosio C.F., Hinnebusch B.J.. 2014; Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host Microbe15:578–586 [CrossRef][PubMed]
    [Google Scholar]
  49. Van Ert M.N., Easterday W.R., Huynh L.Y., Okinaka R.T., Hugh-Jones M.E., Ravel J., Zanecki S.R., Pearson T., Simonson T.S.. otherauthors 2007; Global genetic population structure of Bacillus anthracis. PLoS One2:e461 [CrossRef][PubMed]
    [Google Scholar]
  50. Wagner D.M., Runberg J., Vogler A.J., Lee J., Driebe E., Price L.B., Engelthaler D.M., Fricke W.F., Ravel J., Keim P.. 2010; No resistance plasmid in Yersinia pestis, North America. Emerg Infect Dis16:885–887 [CrossRef][PubMed]
    [Google Scholar]
  51. Wagner D.M., Klunk J., Harbeck M., Devault A., Waglechner N., Sahl J.W., Enk J., Birdsell D.N., Kuch M.. otherauthors 2014; Yersinia pestis and the plague of Justinian 541-543 AD: a genomic analysis. Lancet Infect Dis14:319–326 [CrossRef][PubMed]
    [Google Scholar]
  52. Waterhouse A.M., Procter J.B., Martin D.M., Clamp M., Barton G.J.. 2009; Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics25:1189–1191 [CrossRef][PubMed]
    [Google Scholar]
  53. Welch T.J., Fricke W.F., McDermott P.F., White D.G., Rosso M.L., Rasko D.A., Mammel M.K., Eppinger M., Rosovitz M.J.. otherauthors 2007; Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS One2:e309 [CrossRef][PubMed]
    [Google Scholar]
  54. Zerbino D.R., Birney E.. 2008; Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res18:821–829 [CrossRef][PubMed]
    [Google Scholar]
  55. Cui, Y. et al. (2011). Sequence Read Archive: http://www.ncbi.nlm.nih.gov/Traces/sra/?study = SRP003808.
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000028
Loading
/content/journal/mgen/10.1099/mgen.0.000028
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error