1887

Abstract

undergoes an obligate flea–rodent–flea enzootic life cycle. The rapidly fatal properties of are responsible for the organism's sustained survival in natural plague foci. Lipopolysaccharide (LPS) plays several roles in pathogenesis, prominent among them being resistance to host immune effectors and induction of a septic-shock state during the terminal phases of infection. LPS is acylated with 4–6 fatty acids, the number varying with growth temperature and affecting the molecule's toxic properties. mutants were constructed with a deletion insertion in the gene in both virulent and attenuated strains, preventing the organisms from synthesizing the most toxic hexa-acylated lipid A molecule when grown at 25 °C. The virulence and/or protective potency of pathogenic and attenuated Δ mutants were then examined in a mouse model. The Δ mutation in a virulent strain led to no change in the LD value compared to that of the parental strain, while the Δ mutation in attenuated strains led to a modest 2.5–16-fold reduction in virulence. LPS preparations containing fully hexa-acylated lipid A were ten times more toxic in actinomycin D-treated mice then preparations lacking this lipid A isoform, although this was not significant (>0.05). The Δ mutation in vaccine strain EV caused a significant increase in its protective potency. These studies suggest there is little impact from lipid A modifications on the virulence of strains but there are potential improvements in the protective properties in attenuated vaccine strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46880-0
2007-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/4/443.html?itemId=/content/journal/jmm/10.1099/jmm.0.46880-0&mimeType=html&fmt=ahah

References

  1. Alexander, C. & Rietschel, E. T. ( 2001; ). Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7, 167–202.
    [Google Scholar]
  2. Anisimov, A. P. ( 1999a; ). Factors providing the blocking activity of Yersinia pestis. Mol Gen Mikrobiol Virusol 4, 11–15.
    [Google Scholar]
  3. Anisimov, A. P. (1999b). Molecular genetic mechanisms of the formation and functional significance of the capsule of Yersinia pestis. ScD thesis, Russian Research Anti-Plague Institute ‘Microbe’, Saratov, Russia.
  4. Anisimov, A. P. ( 2002a; ). Factors of Yersinia pestis providing circulation and persistence of plague pathogen in ecosystems of natural foci. Communication 2. Mol Gen Mikrobiol Virusol 4, 3–11.
    [Google Scholar]
  5. Anisimov, A. P. ( 2002b; ). Yersinia pestis factors, assuring circulation and maintenance of the plague pathogen in natural foci ecosystems. Report 1. Mol Gen Mikrobiol Virusol 3, 3–23.
    [Google Scholar]
  6. Anisimov, A. P., Lindler, L. E. & Pier, G. B. ( 2004; ). Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev 17, 434–464.[CrossRef]
    [Google Scholar]
  7. Anisimov, A. P., Dentovskaya, S. V., Titareva, G. M., Bakhteeva, I. V., Shaikhutdinova, R. Z., Balakhonov, S. V., Lindner, B., Kocharova, N. A., Senchenkova, S. N. & other authors ( 2005; ). Intraspecies and temperature-dependent variations in susceptibility of Yersinia pestis to bactericidal action of serum and polymyxin B. Infect Immun 73, 7324–7331.[CrossRef]
    [Google Scholar]
  8. Ashmarin, I. P. & Vorob'ov, A. A. (1962). Statistical Methods in Microbiological Research. Leningrad: State Press of Medical Literature.
  9. Aussel, L., Thérisod, H., Karibian, D., Perry, M. B., Bruneteau, M. & Caroff, M. ( 2000; ). Novel variation of lipid A structures in strains of different Yersinia species. FEBS Lett 465, 87–92.[CrossRef]
    [Google Scholar]
  10. Brown, D. E. & Morrison, D. C. ( 1982; ). Possible alteration of normal mechanisms of endotoxin toxicity in vivo by actinomycin D. J Infect Dis 146, 746–750.[CrossRef]
    [Google Scholar]
  11. Brozek, K. A. & Raetz, C. R. H. ( 1990; ). Biosynthesis of lipid A in Escherichia coli. Acyl carrier protein-dependent incorporation of laurate and myristate. J Biol Chem 265, 15410–15417.
    [Google Scholar]
  12. Brubaker, R. R. ( 1991; ). Factors promoting acute and chronic disease caused by yersiniae. Clin Microbiol Rev 4, 309–324.
    [Google Scholar]
  13. Brubaker, R. R. ( 2003; ). Interleukin-10 and inhibition of innate immunity to Yersiniae: roles of Yops and LcrV (V antigen). Infect Immun 71, 3673–3681.[CrossRef]
    [Google Scholar]
  14. Brygoo, E. R. & Rajenison, S. ( 1973; ). Technical improvement of the experimental diagnosis of plague. Use of mice sensitized by cyclophosphamide. Bull Soc Pathol Exot Filiales 66, 255–257.
    [Google Scholar]
  15. Butler, T. ( 1989; ). The black death past and present. 1. Plague in the 1980s. Trans R Soc Trop Med Hyg 83, 458–460.[CrossRef]
    [Google Scholar]
  16. Clementz, T., Zhou, Z. & Raetz, C. R. H. ( 1997; ). Function of the Escherichia coli msbB gene, a multicopy suppressor of htrB knockouts, in the acylation of lipid A. J Biol Chem 272, 10353–10360.[CrossRef]
    [Google Scholar]
  17. Cornelis, G. R. ( 2000; ). Molecular and cell biology aspects of plague. Proc Natl Acad Sci U S A 97, 8778–8783.[CrossRef]
    [Google Scholar]
  18. Das, U. N. ( 2000; ). Critical advances in septicemia and septic shock. Crit Care 4, 290–296.[CrossRef]
    [Google Scholar]
  19. Delude, R. L., Savedra, R., Zhao, H., Jr, Thieringer, R., Yamamoto, S., Fenton, M. J. & Golenbock, D. T. ( 1995; ). CD14 enhances cellular responses to endotoxin without imparting ligand-specific recognition. Proc Natl Acad Sci U S A 92, 9288–9292.[CrossRef]
    [Google Scholar]
  20. Dentovskaya, S. V., Shaikhutdinova, R. Z., Knirel, Y. A., Ivanov, S. A. & Anisimov, A. P. ( 2006; ). Construction of attenuated vaccine strains of Gram-negative bacteria. Mol Gen Mikrobiol Virusol 2, 3–8.
    [Google Scholar]
  21. D'Hauteville, H., Khan, S., Maskell, D. J., Kussak, A., Weintraub, A., Mathison, J., Ulevitch, R. J., Wuscher, N., Parsot, C. & Sansonetti, P. J. ( 2002; ). Two msbB genes encoding maximal acylation of lipid a are required for invasive Shigella flexneri to mediate inflammatory rupture and destruction of the intestinal epithelium. J Immunol 168, 5240–5251.[CrossRef]
    [Google Scholar]
  22. Dmitrovskii, V. G. (1994). Toxic component of pathogenesis of plague infectious process: infective toxic shock. In Prophylaxis and Means of Prevention of Plague, pp. 15–16. Edited by V. M. Stepanov. Almaty: Scientific-Manufacturing Association of the Plague-Control Establishments.
  23. Donnenberg, M. S. & Kaper, J. B. ( 1991; ). Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59, 4310–4317.
    [Google Scholar]
  24. Feodorova, V. A. & Golova, A. B. ( 2005; ). Antigenic and phenotypic modifications of Yersinia pestis under calcium and glucose concentrations simulating the mammalian bloodstream environment. J Med Microbiol 54, 435–441.[CrossRef]
    [Google Scholar]
  25. Feodorova, V. A., Devdariani, Z. L. & Nazarova, L. S. ( 1999; ). Adjuvant effect of anti-idiotypic antibodies to Yersinia pestis lipopolysaccharide. J Med Microbiol 48, 751–756.[CrossRef]
    [Google Scholar]
  26. Flashner, Y., Mamroud, E., Tidhar, A., Ber, R., Aftalion, M., Gur, D., Lazar, S., Zvi, A., Bino, T. & other authors ( 2004; ). Generation of Yersinia pestis attenuated strains by signature-tagged mutagenesis in search of novel vaccine candidates. Infect Immun 72, 908–915.[CrossRef]
    [Google Scholar]
  27. Galanos, C. & Freudenberg, M. A. ( 1993; ). Mechanisms of endotoxin shock and endotoxin hypersensitivity. Immunobiology 187, 346–356.[CrossRef]
    [Google Scholar]
  28. Galanos, C., Lüderitz, O. & Westphal, O. ( 1969; ). A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9, 245–249.[CrossRef]
    [Google Scholar]
  29. Galanos, C., Freudenberg, M. A. & Reutter, W. ( 1979; ). Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci U S A 76, 5939–5943.[CrossRef]
    [Google Scholar]
  30. Golenbock, D. T., Hampton, R. Y., Qureshi, N., Takayama, K. & Raetz, C. R. H. ( 1991; ). Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J Biol Chem 266, 19490–19498.
    [Google Scholar]
  31. Gremyakova, T. A., Vinogradov, E. V., Lindner, B., Kocharova, N. A., Senchenkova, S. N., Shashkov, A. S., Knirel, Y. A., Holst, O., Shaikhutdinova, R. Z. & Anisimov, A. P. ( 2003; ). The core structure of the lipopolysaccharide of Yersinia pestis strain KM218. Influence of growth temperature. Adv Exp Med Biol 529, 229–231.
    [Google Scholar]
  32. Higuchi, K. & Smith, J. L. ( 1961; ). Studies on the nutrition and physiology of Pasteurella pestis. IV. A differential plating medium for the estimation of the mutation rate to avirulence. J Bacteriol 81, 605–608.
    [Google Scholar]
  33. Hinnebusch, B. J. ( 2003; ). Transmission factors: Yersinia pestis genes required to infect the flea vector of plague. Adv Exp Med Biol 529, 55–62.
    [Google Scholar]
  34. Hinnebusch, B. J. (2004). The evolution of flea-borne transmission in Yersinia pestis. In Yersinia Molecular and Cellular Biology, pp. 49–73. Edited by E. Carniel & B. J. Hinnebusch. Wymondham: Horizon Bioscience.
  35. Hitchen, P. G., Prior, J. L., Oyston, P. C., Panico, M., Wren, B. W., Titball, R. W., Morris, H. R. & Dell, A. ( 2002; ). Structural characterization of lipo-oligosaccharide (LOS) from Yersinia pestis: regulation of LOS structure by the PhoPQ system. Mol Microbiol 44, 1637–1650.[CrossRef]
    [Google Scholar]
  36. Jackson, S. & Burrows, T. W. ( 1956; ). The virulence-enhancing effect of iron on non-pigmented mutants of virulent strains of Pasteurella pestis. Br J Exp Pathol 37, 577–583.
    [Google Scholar]
  37. Kalupahana, R., Emilianus, A. R., Maskell, D. & Blacklaws, B. ( 2003; ). Salmonella enterica serovar Typhimurium expressing mutant lipid A with decreased endotoxicity causes maturation of murine dendritic cells. Infect Immun 71, 6132–6140.[CrossRef]
    [Google Scholar]
  38. Kawahara, K., Tsukano, H., Watanabe, H., Lindner, B. & Matsuura, M. ( 2002; ). Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun 70, 4092–4098.[CrossRef]
    [Google Scholar]
  39. Khan, S. A., Everest, P., Servos, S., Foxwell, N., Zähringer, U., Brade, H., Rietschel, E. T., Dougan, G., Charles, I. G. & Maskell, D. J. ( 1998; ). A lethal role for lipid A in Salmonella infections. Mol Microbiol 29, 571–579.[CrossRef]
    [Google Scholar]
  40. Knirel, Y. A., Lindner, B., Vinogradov, E. V., Kocharova, N. A., Senchenkova, S. N., Shaikhutdinova, R. Z., Dentovskaya, S. V., Fursova, N. K., Bakhteeva, I. V. & other authors ( 2005a; ). Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis. Biochemistry 44, 1731–1743.[CrossRef]
    [Google Scholar]
  41. Knirel, Y. A., Lindner, B., Vinogradov, E. V., Kocharova, N. A., Senchenkova, S. N., Shaikhutdinova, R. Z., Holst, O., Pier, G. B. & Anisimov, A. P. ( 2005b; ). Cold temperature-induced modifications to the composition and structure of the lipopolysaccharide of Yersinia pestis. Carbohydr Res 340, 1625–1630.[CrossRef]
    [Google Scholar]
  42. Lee, N. G., Sunshine, M. G., Engstrom, J. J., Gibson, B. W. & Apicella, M. A. ( 1995; ). Mutation of the htrB locus of Haemophilus influenzae nontypable strain 2019 is associated with modifications of lipid A and phosphorylation of the lipo-oligosaccharide. J Biol Chem 270, 27151–27159.[CrossRef]
    [Google Scholar]
  43. Lorange, E. A., Race, B. L., Sebbane, F. & Hinnebusch, B. J. ( 2005; ). Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis 191, 1907–1912.[CrossRef]
    [Google Scholar]
  44. Low, K. B., Ittensohn, M., Le, T., Platt, J., Sodi, S., Amoss, M., Ash, O., Carmichael, E., Chakraborty, A. & other authors ( 1999; ). Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat Biotechnol 17, 37–41.
    [Google Scholar]
  45. Marshall, J. D. J., Bartelloni, P. J., Cavanaugh, D. C., Kadull, P. J. & Meyer, K. F. ( 1974; ). Plague immunization. II. Relation of adverse clinical reactions to multiple immunizations with killed vaccine. J Infect Dis 129, S19–S25.[CrossRef]
    [Google Scholar]
  46. Meyer, K. F., Cavanaugh, D. C., Bartelloni, P. J. & Marshall, J. D., Jr ( 1974a; ). Plague immunization. I. Past and present trends. J Infect Dis 129, S13–S18.[CrossRef]
    [Google Scholar]
  47. Meyer, K. F., Smith, G., Foster, L. E., Marshall, J. D., Jr & Cavanaugh, D. C. ( 1974b; ). Plague immunization. IV. Clinical reactions and serologic response to inoculations of Haffekine and freeze-dried plague vaccine. J Infect Dis 129, S30–S36.[CrossRef]
    [Google Scholar]
  48. Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  49. Morrison, D. C. & Rayn, D. L. ( 1987; ). Endotoxins and disease mechanisms. Annu Rev Med 38, 417–432.[CrossRef]
    [Google Scholar]
  50. Naumov, A. V., Ledvanov, M. Yu. & Drozdov, I. G. (1992). Plague Immunology. Saratov, Russia: Russian Research Anti-Plague Institute ‘Microbe’.
  51. Nichols, W. A., Raetz, C. R. H., Clementz, T., Smith, A. L., Hanson, J. A., Ketterer, M. R., Sunshine, M. & Apicella, M. A. ( 1997; ). htrB of Haemophilus influenzae: determination of biochemical activity and effects on virulence and lipooligosaccharide toxicity. J Endotoxin Res 4, 163–172.
    [Google Scholar]
  52. Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C. & other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  53. Perry, R. D. ( 2003; ). A plague of fleas – survival and transmission of Yersinia pestis. ASM News 69, 336–340.
    [Google Scholar]
  54. Perry, R. D. & Fetherston, J. D. ( 1997; ). Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev 10, 35–66.
    [Google Scholar]
  55. Post, D. M. B., Phillips, N. J., Shao, J. Q., Entz, D. D., Gibson, B. W. & Apicella, M. A. ( 2002; ). Intracellular survival of Neisseria gonorrhoeae in male urethral epithelial cells: importance of a hexaacyl lipid A. Infect Immun 70, 909–920.[CrossRef]
    [Google Scholar]
  56. Prior, J. L., Hitchen, P. G., Williamson, D. E., Reason, A. J., Morris, H. R., Dell, A., Wren, B. W. & Titball, R. W. ( 2001; ). Characterization of the lipopolysaccharide of Yersinia pestis. Microb Pathog 30, 49–57.[CrossRef]
    [Google Scholar]
  57. Protsenko, O. A., Anisimov, P. I., Mozharov, O. T., Konnov, N. P., Popov, Y. A. & Kokushkin, A. M. ( 1983; ). Detection and characterization of Yersinia pestis plasmids determining pesticin I, fraction I antigen and ‘mouse’ toxin synthesis. Sov Genet 19, 838–846.
    [Google Scholar]
  58. Raetz, C. R. H. & Whitfield, C. ( 2002; ). Lipooligosaccharide endotoxins. Annu Rev Biochem 71, 635–700.[CrossRef]
    [Google Scholar]
  59. Rebeil, R., Ernst, R. K., Gowen, B. B., Miller, S. I. & Hinnebush, B. J. ( 2004; ). Variation in lipid A structure in the pathogenic yersiniae. Mol Microbiol 52, 1363–1373.[CrossRef]
    [Google Scholar]
  60. Rebeil, R., Ernst, R. K., Jarrett, C. O., Adams, K. N., Miller, S. I. & Hinnebush, B. J. ( 2006; ). Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid A variation. J Bacteriol 188, 1381–1388.[CrossRef]
    [Google Scholar]
  61. Reeves, P. R., Hobbs, M., Valvano, M. A., Skurnik, M., Whitfield, C., Coplin, D., Kido, N., Klena, J., Maskell, D. & other authors ( 1996; ). Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4, 495–503.[CrossRef]
    [Google Scholar]
  62. Reisman, R. E. ( 1970; ). Allergic reactions due to plague vaccine. J Allergy 46, 49–56.[CrossRef]
    [Google Scholar]
  63. Rietschel, E. T., Kirikae, T., Schade, F. U., Mamat, U., Schmidt, G., Löppnow, H., Ulmer, A. J., Zähringer, U., Seydel, U. & other authors ( 1994; ). Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8, 217–225.
    [Google Scholar]
  64. Robinson, V. L., Oyston, P. C. & Titball, R. W. ( 2005; ). A dam mutant of Yersinia pestis is attenuated and induces protection against plague. FEMS Microbiol Lett 252, 251–256.[CrossRef]
    [Google Scholar]
  65. Russell, P., Eley, S. M., Hibbs, S. E., Manchee, R. J., Stagg, A. J. & Titball, R. W. ( 1995; ). A comparison of plague vaccine, USP and EV76 vaccine induced protection against Yersinia pestis in a murine model. Vaccine 13, 1551–1556.[CrossRef]
    [Google Scholar]
  66. Seyberth, H. W., Schmidt-Gayk, H. & Hackental, E. ( 1972; ). Toxicity, clearance and distribution of endotoxin in mice as influenced by actinomycin D, cycloheximide, α-amanitin and lead acetate. Toxicon 10, 491–500.[CrossRef]
    [Google Scholar]
  67. Sheremet, O. V., Boshnakov, R. B., Kharabadzhakhian, G. D., Milanova, A. N., Kartasheva, L. D., Tomov, A. Ts. & Kosovskii, V. K. ( 1987; ). Immunogenicity of Yersinia pestis grown on nutrient media at 2 ° and 3 °C. Zh Mikrobiol Epidemiol Immunobiol 7, 63–68.
    [Google Scholar]
  68. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1, 784–791.[CrossRef]
    [Google Scholar]
  69. Somerville, J. E., Jr, Cassiano, L., Bainbridge, B., Cunningham, M. D. & Darveau, R. P. ( 1996; ). A novel Escherichia coli lipid A mutant that produces an anti-inflammatory lipopolysaccharide. J Clin Invest 97, 359–365.[CrossRef]
    [Google Scholar]
  70. Steeghs, L., Kuipers, B., Hamstra, H. J., Kersten, G., van Alphen, L. & van der Ley, P. ( 1999; ). Immunogenicity of outer membrane proteins in a lipopolysaccharide-deficient mutant of Neisseria meningitidis: influence of adjuvants on the immune response. Infect Immun 67, 4988–4993.
    [Google Scholar]
  71. Sunshine, M. G., Gibson, B. W., Engstrom, J. J., Nichols, W. A., Jones, B. D. & Apicella, M. A. ( 1997; ). Mutation of the htrB gene in a virulent Salmonella typhimurium strain by intergeneric transduction: strain construction and phenotypic characterization. J Bacteriol 179, 5521–5533.
    [Google Scholar]
  72. Titball, R. W. & Williamson, E. D. ( 2001; ). Vaccination against bubonic and pneumonic plague. Vaccine 19, 4175–4184.[CrossRef]
    [Google Scholar]
  73. Tynianova, V. I., Ziuzina, V. P., Demidova, G. V., Sokolova, E. P., Pisanov, R. V., Bespalova, I. A., Borodina, T. N., Anisimov, B. I. & Mishan'kin, B. N. ( 2003; ). Toxicity of the preparations of lipopolysaccharides isolated from 2 ° and 3 ° cultures of Yersinia pestis EV76. Biotekhnologiia (Mosc.) 6, 10–16.
    [Google Scholar]
  74. van Amersfoort, E. S., van Berkel, T. J. C. & Kuiper, J. ( 2003; ). Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 16, 379–414.[CrossRef]
    [Google Scholar]
  75. van der Ley, P., Steeghs, L., Hamstra, H. J., Hove, J. T., Zomer, B. & van Alphen, L. ( 2001; ). Modification of lipid A biosynthesis in Neisseria meningitidis lpxL mutants: influence on lipopolysaccharide structure, toxicity, and adjuvant activity. Infect Immun 69, 5981–5990.[CrossRef]
    [Google Scholar]
  76. van der Poll, T. & van Deventer, S. J. ( 1999; ). Cytokines and anticytokines in the pathogenesis of sepsis. Infect Dis Clin North Am 13, 413–426.[CrossRef]
    [Google Scholar]
  77. Vasil'eva, G. I., Doroshenko, E. P. & Kiseleva, A. K. ( 1988; ). Changes in the ‘latent’ virulence of a vaccinal strain of Yersinia pestis multiplying within macrophages. Zh Mikrobiol Epidemiol Immunobiol 9, 63–66.
    [Google Scholar]
  78. Vinogradov, E. V., Lindner, B., Kocharova, N. A., Senchenkova, S. N., Shashkov, A. S., Knirel, Y. A., Holst, O., Gremyakova, T. A., Shaikhutdinova, R. Z. & Anisimov, A. P. ( 2002; ). The core structure of the lipopolysaccharide from the causative agent of plague, Yersinia pestis. Carbohydr Res 337, 775–777.[CrossRef]
    [Google Scholar]
  79. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46880-0
Loading
/content/journal/jmm/10.1099/jmm.0.46880-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error