1887

Abstract

Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS systems was not officially launched for diagnostic use in clinical microbiology laboratories in China until 2012. Here, we report the findings from the first large-scale evaluation study of VITEK MS for routine bacterial identification in two major diagnostic centres in Beijing and Hong Kong. A total of 2266 unique isolates representing 56 genera and 127 species were analysed, and results were compared to those obtained by VITEK 2. Any discrepancies were resolved by 16S rRNA sequencing. Overall, VITEK MS provided correct identification for 2246 (99.1 %) isolates, including 2193 (96.8 %) with correct species-level identifications and 53 (2.3 %) matched at the genus level only. VITEK MS surpassed VITEK 2 consistently in species-level identification of important pathogens, including non- Gram-negative bacilli (94.7 versus 92 %), staphylococci (99.7 versus 92.4 %), streptococci (92.6 versus 79.4 %), enterococci (98.8 versus 92.6 %) and spp. (97.3 versus 55.5 %). The findings demonstrated that VITEK MS is highly accurate and reliable for routine bacterial identification in clinical settings in China.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.080317-0
2015-01-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/1/18.html?itemId=/content/journal/jmm/10.1099/jmm.0.080317-0&mimeType=html&fmt=ahah

References

  1. Anhalt J. P., Fenselau C.. ( 1975;). Identification of bacteria using mass spectrometry. . Anal Chem 47:, 219–225. [CrossRef]
    [Google Scholar]
  2. Benagli C., Rossi V., Dolina M., Tonolla M., Petrini O.. ( 2011;). Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of clinically relevant bacteria. . PLoS ONE 6:, e16424. [CrossRef][PubMed]
    [Google Scholar]
  3. Bizzini A., Durussel C., Bille J., Greub G., Prod’hom G.. ( 2010;). Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. . J Clin Microbiol 48:, 1549–1554. [CrossRef][PubMed]
    [Google Scholar]
  4. Chatzigeorgiou K. S., Sergentanis T. N., Tsiodras S., Hamodrakas S. J., Bagos P. G.. ( 2011;). Phoenix 100 versus Vitek 2 in the identification of Gram-positive and Gram-negative bacteria: a comprehensive meta-analysis. . J Clin Microbiol 49:, 3284–3291. [CrossRef][PubMed]
    [Google Scholar]
  5. Chen J. H., Yam W. C., Ngan A. H., Fung A. M., Woo W. L., Yan M. K., Choi G. K., Ho P. L., Cheng V. C., Yuen K. Y.. ( 2013;). Advantages of using matrix-assisted laser desorption ionization-time of flight mass spectrometry as a rapid diagnostic tool for identification of yeasts and mycobacteria in the clinical microbiological laboratory. . J Clin Microbiol 51:, 3981–3987. [CrossRef][PubMed]
    [Google Scholar]
  6. Cherkaoui A., Hibbs J., Emonet S., Tangomo M., Girard M., Francois P., Schrenzel J.. ( 2010;). Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. . J Clin Microbiol 48:, 1169–1175. [CrossRef][PubMed]
    [Google Scholar]
  7. Dortet L., Legrand P., Soussy C. J., Cattoir V.. ( 2006;). Bacterial identification, clinical significance, and antimicrobial susceptibilities of Acinetobacter ursingii and Acinetobacter schindleri, two frequently misidentified opportunistic pathogens. . J Clin Microbiol 44:, 4471–4478. [CrossRef][PubMed]
    [Google Scholar]
  8. Dubois D., Grare M., Prere M. F., Segonds C., Marty N., Oswald E.. ( 2012;). Performances of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid identification of bacteria in routine clinical microbiology. . J Clin Microbiol 50:, 2568–2576. [CrossRef][PubMed]
    [Google Scholar]
  9. Garner O., Mochon A., Branda J., Burnham C. A., Bythrow M., Ferraro M., Ginocchio C., Jennemann R., Manji R.. & other authors ( 2014;). Multi-centre evaluation of mass spectrometric identification of anaerobic bacteria using the VITEK® MS system. . Clin Microbiol Infect 20:, 335–339. [CrossRef][PubMed]
    [Google Scholar]
  10. Harju I., Lange C., Kostrzewa M., Maier T., Rantakokko-Jalava K.. ( 2014;). Differentiation of Streptococcus pneumoniae and S. mitis group streptococci by MALDI Biotyper using an improved database and algorithm. Presented at the American Society for Microbiology 114th General Meeting, Boston, MA. .
  11. Howard A., O’Donoghue M., Feeney A., Sleator R. D.. ( 2012;). Acinetobacter baumannii: an emerging opportunistic pathogen. . Virulence 3:, 243–250. [CrossRef][PubMed]
    [Google Scholar]
  12. Janda J. M., Abbott S. L.. ( 2007;). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. . J Clin Microbiol 45:, 2761–2764. [CrossRef][PubMed]
    [Google Scholar]
  13. Janda J. M., Abbott S. L., Cheung W. K., Hanson D. F.. ( 1994;). Biochemical identification of citrobacteria in the clinical laboratory. . J Clin Microbiol 32:, 1850–1854.[PubMed]
    [Google Scholar]
  14. Johnson J. R.. ( 2000;). Shigella and Escherichia coli at the crossroads: machiavellian masqueraders or taxonomic treachery. ? J Med Microbiol 49:, 583–585.[PubMed]
    [Google Scholar]
  15. La Scola B., Fournier P. E., Raoult D.. ( 2011;). Burden of emerging anaerobes in the MALDI-TOF and 16S rRNA gene sequencing era. . Anaerobe 17:, 106–112. [CrossRef][PubMed]
    [Google Scholar]
  16. Manji R., Bythrow M., Branda J. A., Burnham C. A., Ferraro M. J., Garner O. B., Jennemann R., Lewinski M. A., Mochon A. B.. & other authors ( 2014;). Multi-center evaluation of the VITEK® MS system for mass spectrometric identification of non-Enterobacteriaceae Gram-negative bacilli. . Eur J Clin Microbiol Infect Dis 33:, 337–346. [CrossRef][PubMed]
    [Google Scholar]
  17. McElvania TeKippe E., Shuey S., Winkler D. W., Butler M. A., Burnham C. A.. ( 2013;). Optimizing identification of clinically relevant Gram-positive organisms by use of the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry system. . J Clin Microbiol 51:, 1421–1427. [CrossRef][PubMed]
    [Google Scholar]
  18. Moon H. W., Lee S. H., Chung H. S., Lee M., Lee K.. ( 2013;). Performance of the Vitek MS matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for identification of Gram-positive cocci routinely isolated in clinical microbiology laboratories. . J Med Microbiol 62:, 1301–1306. [CrossRef][PubMed]
    [Google Scholar]
  19. Nagy E., Maier T., Urban E., Terhes G., Kostrzewa M., Bacteria.ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria ( 2009;). Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. . Clin Microbiol Infect 15:, 796–802. [CrossRef][PubMed]
    [Google Scholar]
  20. Neville S. A., Lecordier A., Ziochos H., Chater M. J., Gosbell I. B., Maley M. W., van Hal S. J.. ( 2011;). Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. . J Clin Microbiol 49:, 2980–2984. [CrossRef][PubMed]
    [Google Scholar]
  21. Paauw A., Caspers M. P., Schuren F. H., Leverstein-van Hall M. A., Delétoile A., Montijn R. C., Verhoef J., Fluit A. C.. ( 2008;). Genomic diversity within the Enterobacter cloacae complex. . PLoS ONE 3:, e3018. [CrossRef][PubMed]
    [Google Scholar]
  22. Richter S. S., Sercia L., Branda J. A., Burnham C. A., Bythrow M., Ferraro M. J., Garner O. B., Ginocchio C. C., Jennemann R.. & other authors ( 2013;). Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system. . Eur J Clin Microbiol Infect Dis 32:, 1571–1578. [CrossRef][PubMed]
    [Google Scholar]
  23. Ruoff K.. ( 2011;). General approaches to identification of aerobic Gram-positive cocci. . In Manual of Clinical Microbiology, pp. 304–307. Edited by Versalovic J., Carroll K. C., Funke G., Jorgensen J. H., Landry M. L., Warnock D. W... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  24. Rychert J., Burnham C. A., Bythrow M., Garner O. B., Ginocchio C. C., Jennemann R., Lewinski M. A., Manji R., Mochon A. B.. & other authors ( 2013;). Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria. . J Clin Microbiol 51:, 2225–2231. [CrossRef][PubMed]
    [Google Scholar]
  25. Seng P., Drancourt M., Gouriet F., La Scola B., Fournier P. E., Rolain J. M., Raoult D.. ( 2009;). Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. . Clin Infect Dis 49:, 543–551. [CrossRef][PubMed]
    [Google Scholar]
  26. van den Beld M. J., Reubsaet F. A.. ( 2012;). Differentiation between Shigella, enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli. . Eur J Clin Microbiol Infect Dis 31:, 899–904. [CrossRef][PubMed]
    [Google Scholar]
  27. van Veen S. Q., Claas E. C., Kuijper E. J.. ( 2010;). High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. . J Clin Microbiol 48:, 900–907. [CrossRef][PubMed]
    [Google Scholar]
  28. Vila J., Pachón J.. ( 2012;). Therapeutic options for Acinetobacter baumannii infections: an update. . Expert Opin Pharmacother 13:, 2319–2336. [CrossRef][PubMed]
    [Google Scholar]
  29. Westblade L. F., Jennemann R., Branda J. A., Bythrow M., Ferraro M. J., Garner O. B., Ginocchio C. C., Lewinski M. A., Manji R.. & other authors ( 2013;). Multicenter study evaluating the Vitek MS system for identification of medically important yeasts. . J Clin Microbiol 51:, 2267–2272. [CrossRef][PubMed]
    [Google Scholar]
  30. Woo P. C., Teng J. L., Yeung J. M., Tse H., Lau S. K., Yuen K. Y.. ( 2011;). Automated identification of medically important bacteria by 16S rRNA gene sequencing using a novel comprehensive database, 16SpathDB. . J Clin Microbiol 49:, 1799–1809. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.080317-0
Loading
/content/journal/jmm/10.1099/jmm.0.080317-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error