1887

Abstract

is an intracellular pathogen that infects mucosal epithelial cells, causing persistent infections. Although chronic inflammation is a hallmark of chlamydial disease, the proinflammatory mechanisms involved are poorly understood. Little is known about how innate immunity in the male genital tract (MGT) responds to Toll-like receptors (TLRs) are a family of receptors of the innate immunity that recognize different pathogen-associated molecular patterns (PAMPs) present in bacteria, viruses, yeasts and parasites. The study of TLR expression in the MGT has been poorly investigated. The aim of this work was to investigate the keratinocyte-derived chemokine (KC) response of MGT primary cultures from C57BL/6 mice to and different PAMPs. KC production by prostate, seminal vesicle and epididymis/vas deferens cell cultures was determined by ELISA in culture supernatants. TLR2, 3, 4 and 9 agonists induced the production of KC by all MGT primary cultures assayed. In addition, we analysed the host response against and Chlamydial LPS (cLPS) as well as and infection induced KC secretion by all MGT cell cultures analysed. Differences in KC levels were observed between cultures, suggesting specific sensitivity against pathogens among MGT tissues. Chemokine secretion was observed after stimulation of seminal vesicle cells with TLR agonists, cLPS and . To our knowledge, this is the first report showing KC production by seminal vesicle cells after stimulation with TLR ligands, or antigens. These results indicate that different receptors of the innate immunity are present in the MGT. Understanding specific immune responses, both innate and adaptive, against chlamydial infections, mounted in each tissue of the MGT, will be crucial to design new therapeutic approaches where innate and/or adaptive immunity would be targeted.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.024877-0
2011-03-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/3/307.html?itemId=/content/journal/jmm/10.1099/jmm.0.024877-0&mimeType=html&fmt=ahah

References

  1. Akira, S. & Takeda, K. ( 2004; ). Toll-like receptor signalling. Nat Rev Immunol 4, 499–511.[CrossRef]
    [Google Scholar]
  2. Al-Mously, N. & Eley, A. ( 2007; ). Interaction of Chlamydia trachomatis serovar E with male genital tract epithelium results in secretion of proinflammatory cytokines. J Med Microbiol 56, 1025–1032.[CrossRef]
    [Google Scholar]
  3. Andersen, J. M., Al-Khairy, D. & Ingalls, R. R. ( 2006; ). Innate immunity at the mucosal surface: role of toll-like receptor 3 and toll-like receptor 9 in cervical epithelial cell responses to microbial pathogens. Biol Reprod 74, 824–831.[CrossRef]
    [Google Scholar]
  4. Arya, O. P., Mallinson, H., Andrews, B. E. & Sillis, M. ( 1984; ). Diagnosis of urethritis: role of polymorphonuclear leukocyte counts in gramstained urethral smears. Sex Transm Dis 11, 10–17.[CrossRef]
    [Google Scholar]
  5. Bai, H., Yang, J., Qiu, H., Wang, S., Fan, Y., Han, X., Xie, S. & Yang, X. ( 2005; ). Intranasal inoculation of Chlamydia trachomatis mouse pneumonitis agent induces significant neutrophil infiltration which is not efficient in controlling the infection in mice. Immunology 114, 246–254.[CrossRef]
    [Google Scholar]
  6. Barteneva, N., Theodor, I., Peterson, E. M. & de la Maza, L. M. ( 1996; ). Role of neutrophils in controlling early stages of a Chlamydia trachomatis infection. Infect Immun 64, 4830–4833.
    [Google Scholar]
  7. Bas, S., Neff, L., Vuillet, M., Spenato, U., Seya, T., Matsumoto, M. & Gabay, C. ( 2008; ). The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. J Immunol 180, 1158–1168.[CrossRef]
    [Google Scholar]
  8. Bhushan, S., Tchatalbachev, S., Klug, J., Fijak, M., Pineau, C., Chakraborty, T. & Meinhardt, A. ( 2008; ). Uropathogenic Escherichia coli block MyD88-dependent and activate MyD88-independent signaling pathways in rat testicular cells. J Immunol 180, 5537–5547.[CrossRef]
    [Google Scholar]
  9. Brunham, R. C. & Rey-Ladino, J. ( 2005; ). Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 5, 149–161.[CrossRef]
    [Google Scholar]
  10. Buchholz, K. R. & Stephens, R. S. ( 2006; ). Activation of the host cell proinflammatory interleukin-8 response by Chlamydia trachomatis. Cell Microbiol 8, 1768–1779.[CrossRef]
    [Google Scholar]
  11. Buchholz, K. R. & Stephens, R. S. ( 2008; ). The cytosolic pattern recognition receptor NOD1 induces inflammatory interleukin-8 during Chlamydia trachomatis infection. Infect Immun 76, 3150–3155.[CrossRef]
    [Google Scholar]
  12. Bulut, Y., Faure, E., Thomas, L., Karahashi, H., Michelsen, K. S., Equils, O., Morrison, S. G., Morrison, R. P. & Arditi, M. ( 2002; ). Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168, 1435–1440.[CrossRef]
    [Google Scholar]
  13. Com, E., Bourgeon, F., Evrard, B., Ganz, T., Colleu, D., Jégou, B. & Pineau, C. ( 2003; ). Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol Reprod 68, 95–104.
    [Google Scholar]
  14. Cunningham, K. A. & Beagley, K. W. ( 2008; ). Male genital tract chlamydial infection: implications for pathology and infertility. Biol Reprod 79, 180–189.[CrossRef]
    [Google Scholar]
  15. da Costa, C. U., Wantia, N., Kirschning, C. J., Busch, D. H., Rodriguez, N., Wagner, H. & Miethke, T. ( 2004; ). Heat shock protein 60 from Chlamydia pneumoniae elicits an unusual set of inflammatory responses via Toll-like receptor 2 and 4 in vivo. Eur J Immunol 34, 2874–2884.[CrossRef]
    [Google Scholar]
  16. Darville, T. & Hiltke, T. J. ( 2010; ). Pathogenesis of genital tract disease due to Chlamydia trachomatis. J Infect Dis 201, S114–S125.
    [Google Scholar]
  17. Derbigny, W. A., Kerr, M. S. & Johnson, R. M. ( 2005; ). Pattern recognition molecules activated by Chlamydia muridarum infection of cloned murine oviduct epithelial cell lines. J Immunol 175, 6065–6075.[CrossRef]
    [Google Scholar]
  18. Domingue, G. J. & Hellstrom, W. J. ( 1998; ). Prostatitis. Clin Microbiol Rev 11, 604–613.
    [Google Scholar]
  19. Eley, A., Hosseinzadeh, S., Hakimi, H., Geary, I. & Pacey, A. A. ( 2005; ). Apoptosis of ejaculated human sperm is induced by co-incubation with Chlamydia trachomatis lipopolysaccharide. Hum Reprod 20, 2601–2607.[CrossRef]
    [Google Scholar]
  20. Erridge, C., Pridmore, A., Eley, A., Stewart, J. & Poxton, I. R. ( 2004; ). Lipopolysaccharides of Bacteroides fragilis, Chlamydia trachomatis and Pseudomonas aeruginosa signal via Toll-like receptor 2. J Med Microbiol 53, 735–740.[CrossRef]
    [Google Scholar]
  21. Fichorova, R. N., Cronin, A. O., Lien, E., Anderson, D. J. & Ingalls, R. R. ( 2002; ). Response to Neisseria gonorrhoeae by cervicovaginal epithelial cells occurs in the absence of Toll-like receptor 4-mediated signaling. J Immunol 168, 2424–2432.[CrossRef]
    [Google Scholar]
  22. Fraczek, M. & Kurpisz, M. ( 2007; ). Inflammatory mediators exert toxic effects of oxidative stress on human spermatozoa. J Androl 28, 325–333.
    [Google Scholar]
  23. Gatti, G., Rivero, V., Motrich, R. D. & Maccioni, M. ( 2006; ). Prostate epithelial cells can act as early sensors of infection by up-regulating TLR4 expression and proinflammatory mediators upon LPS stimulation. J Leukoc Biol 79, 989–998.[CrossRef]
    [Google Scholar]
  24. Gatti, G., Quintar, A. A., Andreani, V., Incola, J. P., Maldonado, C. A., Masini-Repiso, A. M., Rivero, V. E. & Maccioni, M. ( 2009; ). Expression of Toll-like receptor 4 in the prostate gland and its association with the severity of prostate cancer. Prostate 69, 1387–1397.[CrossRef]
    [Google Scholar]
  25. Gribar, S. C., Richardson, W. M., Sodhi, C. P. & Hackam, D. J. ( 2008; ). No longer an innocent bystander: epithelial toll-like receptor signaling in the development of mucosal inflammation. Mol Med 14, 645–659.
    [Google Scholar]
  26. Heine, H., Müller-Loennies, S., Brade, L., Lindner, B. & Brade, H. ( 2003; ). Endotoxic activity and chemical structure of lipopolysaccharides from Chlamydia trachomatis serotypes E and L2 and Chlamydophila psittaci 6BC. Eur J Biochem 270, 440–450.[CrossRef]
    [Google Scholar]
  27. Hirschfeld, M., Weis, J. J., Toschchakov, V., Salkowski, C. A., Cody, M. J., Ward, D. C., Qureshi, N., Michalek, S. M. & Vogel, S. N. ( 2001; ). Signalling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 69, 1477–1482.[CrossRef]
    [Google Scholar]
  28. Hosseinzadeh, S., Pacey, A. A. & Eley, A. ( 2003; ). Chlamydia trachomatis-induced death of human spermatozoa is caused primarily by lipopolysaccharide. J Med Microbiol 52, 193–200.[CrossRef]
    [Google Scholar]
  29. Hunt, J. S. ( 1994; ). Immunologically relevant cells in the uterus. Biol Reprod 50, 461–466.[CrossRef]
    [Google Scholar]
  30. Idahl, A., Boman, J., Kumlin, U. & Olofsson, J. I. ( 2004; ). Demonstration of Chlamydia trachomatis IgG antibodies in the male partner of the infertile couple is correlated with a reduced likelihood of achieving pregnancy. Hum Reprod 19, 1121–1126.[CrossRef]
    [Google Scholar]
  31. Ilio, K. Y., Nemeth, J. A., Lang, S. & Lee, C. ( 1998; ). The primary culture of rat prostate basal cells. J Androl 19, 718–724.
    [Google Scholar]
  32. Jantos, C. A., Augustin, J., Durchfeld-Meyer, B., Baumgärtner, W. & Schiefer, H. G. ( 1998; ). Experimental genital tract infection with Chlamydia psittaci (GPIC agent) in male rats. Infection 26, 126–130.[CrossRef]
    [Google Scholar]
  33. Joyee, A. G. & Yang, X. ( 2008; ). Role of toll-like receptors in immune responses to chlamydial infections. Curr Pharm Des 14, 593–600.[CrossRef]
    [Google Scholar]
  34. Krause, W. ( 2008; ). Male accessory gland infection. Andrologia 40, 113–116.[CrossRef]
    [Google Scholar]
  35. Krause, W. & Bohring, C. ( 2003; ). Male infertility and genital chlamydial infection: victim or perpetrator? Andrologia 35, 209–216.[CrossRef]
    [Google Scholar]
  36. Maass, M. & Dalhoff, K. ( 1995; ). Transport and storage conditions for cultural recovery of Chlamydia pneumoniae. J Clin Microbiol 33, 1793–1796.
    [Google Scholar]
  37. Mackern-Oberti, J. P., Maccioni, M., Cuffini, C., Gatti, G. & Rivero, V. E. ( 2006; ). Susceptibility of prostate epithelial cells to Chlamydia muridarum infection and their role in innate immunity by recruitment of intracellular Toll-like receptors 4 and 2 and MyD88 to the inclusion. Infect Immun 74, 6973–6981.[CrossRef]
    [Google Scholar]
  38. Motrich, R. D., Cuffini, C., Mackern-Oberti, J. P., Maccioni, M. & Rivero, V. E. ( 2006; ). Chlamydia trachomatis occurrence and its impact on sperm quality in chronic prostatitis patients. J Infect 53, 175–183.[CrossRef]
    [Google Scholar]
  39. Nagarajan, U. M., Ojcius, D. M., Stahl, L., Rank, R. G. & Darville, T. ( 2005; ). Chlamydia trachomatis induces expression of IFN-γ-inducible protein 10 and IFN-β independent of TLR2 and TLR4, but largely dependent on MyD88. J Immunol 175, 450–460.[CrossRef]
    [Google Scholar]
  40. Nishimura, M. & Naito, S. ( 2005; ). Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28, 886–892.[CrossRef]
    [Google Scholar]
  41. O'Connell, C. M., Ionova, I. A., Quayle, A. J., Visintin, A. & Ingalls, R. R. ( 2006; ). Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J Biol Chem 281, 1652–1659.[CrossRef]
    [Google Scholar]
  42. O'Neill, L. A. ( 2002; ). Toll-like receptor signal transduction and the tailoring of innate immunity: a role for Mal? Trends Immunol 23, 296–300.[CrossRef]
    [Google Scholar]
  43. Pal, S., Peterson, E. M. & de la Maza, L. M. ( 2004; ). New murine model for the study of Chlamydia trachomatis genitourinary tract infections in males. Infect Immun 72, 4210–4216.[CrossRef]
    [Google Scholar]
  44. Palladino, M. A., Johnson, T. A., Gupta, R., Chapman, J. L. & Ojha, P. ( 2007; ). Members of the Toll-like receptor family of innate immunity pattern-recognition receptors are abundant in the male rat reproductive tract. Biol Reprod 76, 958–964.[CrossRef]
    [Google Scholar]
  45. Palladino, M. A., Savarese, M. A., Chapman, J. L., Dughi, M. K. & Plaska, D. ( 2008; ). Localization of Toll-like receptors on epididymal epithelial cells and spermatozoa. Am J Reprod Immunol 60, 541–555.[CrossRef]
    [Google Scholar]
  46. Pate, M. S., Hedges, S. R., Sibley, D. A., Russell, M. W., Hook, E. W., III & Mestecky, J. ( 2001; ). Urethral cytokine and immune responses in Chlamydia trachomatis-infected males. Infect Immun 69, 7178–7181.[CrossRef]
    [Google Scholar]
  47. Phipps, S., Lam, C. E., Foster, P. S. & Matthaei, K. I. ( 2007; ). The contribution of toll-like receptors to the pathogenesis of asthma. Immunol Cell Biol 85, 463–470.[CrossRef]
    [Google Scholar]
  48. Pioli, P. A., Amiel, E., Schaefer, T. M., Connolly, J. E., Wira, C. R. & Guyre, P. M. ( 2004; ). Differential expression of Toll-like receptors 2 and 4 in tissues of the human female reproductive tract. Infect Immun 72, 5799–5806.[CrossRef]
    [Google Scholar]
  49. Prantner, D., Darville, T., Sikes, J. D., Andrews, C. W., Jr, Brade, H., Rank, R. G. & Nagarajan, U. M. ( 2009; ). Critical role for interleukin-1β (IL-1β) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1β in mouse macrophages. Infect Immun 77, 5334–5346.[CrossRef]
    [Google Scholar]
  50. Prebeck, S., Brade, H., Kirschning, C. J., da Costa, C. P., Dürr, S., Wagner, H. & Miethke, T. ( 2003; ). The Gram-negative bacterium Chlamydia trachomatis L2 stimulates tumor necrosis factor secretion by innate immune cells independently of its endotoxin. Microbes Infect 5, 463–470.[CrossRef]
    [Google Scholar]
  51. Rasmussen, S. J., Eckmann, L., Quayle, A. J., Shen, L., Zhang, Y. X., Anderson, D. J., Fierer, J., Stephens, R. S. & Kagnoff, M. F. ( 1997; ). Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J Clin Invest 99, 77–87.[CrossRef]
    [Google Scholar]
  52. Riccioli, A., Starace, D., Galli, R., Fuso, A., Scarpa, S., Palombi, F., De Cesaris, P., Ziparo, E. & Filippini, A. ( 2006; ). Sertoli cells initiate testicular innate immune responses through TLR activation. J Immunol 177, 7122–7130.[CrossRef]
    [Google Scholar]
  53. Rodriguez, N., Fend, F., Jennen, L., Schiemann, M., Wantia, N., Prazeres, J., da Costa, C. U., Dürr, S., Heinzmann, U. & other authors ( 2005; ). Polymorphonuclear neutrophils improve replication of Chlamydia pneumoniae in vivo upon MyD88-dependent attraction. J Immunol 174, 4836–4844.[CrossRef]
    [Google Scholar]
  54. Schaefer, T. M., Desouza, K., Fahey, J. V., Beagley, K. W. & Wira, C. R. ( 2004; ). Toll-like receptor (TLR) expression and TLR-mediated cytokine/chemokine production by human uterine epithelial cells. Immunology 112, 428–436.[CrossRef]
    [Google Scholar]
  55. Schaefer, T. M., Fahey, J. V., Wright, J. A. & Wira, C. R. ( 2005; ). Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). J Immunol 174, 992–1002.[CrossRef]
    [Google Scholar]
  56. Skerk, V., Krhen, I., Schonwald, S., Cajic, V., Markovinovic, L., Roglic, S., Zekan, S., Andracevic, A. T. & Kruzic, V. ( 2004; ). The role of unusual pathogens in prostatitis syndrome. Int J Antimicrob Agents 24, S53–S56.
    [Google Scholar]
  57. Stephens, R. S. ( 2003; ). The cellular paradigm of chlamydial pathogenesis. Trends Microbiol 11, 44–51.[CrossRef]
    [Google Scholar]
  58. Tabibzadeh, S. S., Santhanam, U., Sehgal, P. B. & May, L. T. ( 1989; ). Cytokine-induced production of IFN-beta 2/IL-6 by freshly explanted human endometrial stromal cells. Modulation by estradiol-17 beta. J Immunol 142, 3134–3139.
    [Google Scholar]
  59. Vabulas, R. M., Ahmad-Nejad, P., da Costa, C. U., Miethke, T., Kirschning, C. J., Häcker, H. & Wagner, H. ( 2001; ). Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276, 31332–31339.[CrossRef]
    [Google Scholar]
  60. van Kuppeveld, F. J., Johansson, K. E., Galama, J. M., Kissing, J., Bölske, G., van der Logt, J. T. & Melchers, W. J. ( 1994; ). Detection of mycoplasma contamination in cell cultures by a mycoplasma group-specific PCR. Appl Environ Microbiol 60, 149–152.
    [Google Scholar]
  61. Wagenlehner, F. M., Naber, K. G. & Weidner, W. ( 2006; ). Chlamydial infections and prostatitis in men. BJU Int 97, 687–690.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.024877-0
Loading
/content/journal/jmm/10.1099/jmm.0.024877-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error