1887

Abstract

To investigate the antimicrobial resistance, extended-spectrum -lactamases (ESBLs) and clones of isolates causing bacteraemia or urinary tract infection (UTI) in Korea, a total of 406 isolates from patients with bacteraemia (221 isolates) and UTI (185 isolates) were collected from 10 tertiary-care Korean hospitals from July 2006 to October 2007. antimicrobial susceptibility testing was performed for all isolates and ESBL production was tested. Multilocus sequence typing (MLST) analyses were performed to characterize genotypes of ESBL-producing isolates. PFGE was performed for sequence type 11 (ST11) isolates. Forty-seven UTI isolates (25.4 %) produced ESBLs, while 30 bacteraemia isolates (13.6 %) produced ESBLs (=0.002). Among 77 ESBL-producing isolates, thirty-two (41.6 %) produced SHV-type ESBLs. genes such as and were detected in 36.4 %. MLST and PFGE analyses showed that ST11 was dominant in ESBL-producing isolates causing UTI (57.4 %) and in those causing bacteraemia (70.0 %) and has been prevalent in Korean hospitals. ST11 isolates harbour a combination of different ESBL genes. The ST11 clone of ESBL-producing isolates prevails in Korea, but most isolates might acquire ESBL genes independently or several different clones might be distributed in Korea.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.018119-0
2010-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/7/822.html?itemId=/content/journal/jmm/10.1099/jmm.0.018119-0&mimeType=html&fmt=ahah

References

  1. Abbassi, M. S., Torres, C., Achour, W., Vinué, L., Sáenz, Y., Costa, D., Bouchami, O. & Ben Hassen, A. ( 2008; ). Genetic characterization of CTX-M-15-producing Klebsiella pneumoniae and Escherichia coli strains isolated from stem cell transplant patients in Tunisia. Int J Antimicrob Agents 32, 308–314.[CrossRef]
    [Google Scholar]
  2. Bae, I. K., Lee, Y. N., Jeong, S. H., Lee, K., Lee, H., Kwak, H. S. & Woo, G. J. ( 2007; ). High prevalence of SHV-12 and the emergence of CTX-M-12 in clinical isolates of Klebsiella pneumoniae from Korea. Int J Antimicrob Agents 29, 362–364.[CrossRef]
    [Google Scholar]
  3. Brisse, S., Fevre, C., Passet, V., Issenhuth-Jeanjean, S., Tournebize, R., Diancourt, L. & Grimont, P. ( 2009; ). Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One 4, e4982 [CrossRef]
    [Google Scholar]
  4. Chung, D. R., Lee, H. R., Lee, S. S., Kim, S. W., Chang, H. H., Jung, S. I., Oh, M. D., Ko, K. S., Kang, C. I. & other authors ( 2008; ). Evidence for clonal dissemination of the serotype K1 Klebsiella pneumoniae strain causing invasive liver abscesses in Korea. J Clin Microbiol 46, 4061–4063.[CrossRef]
    [Google Scholar]
  5. CLSI ( 2009; ). Performance Standards for Antimicrobial Susceptibility Testing; 19th Informational Supplement. M100-S19. Wayne, PA: Clinical and Laboratory Standards Institute.
  6. Damjanova, I., Tóth, A., Pászti, J., Hajbel-Vékony, G., Jakab, M., Berta, J., Milch, H. & Füzi, M. ( 2008; ). Expansion and countrywide dissemination of ST11, ST15, and ST147 ciprofloxacin-resistant CTX-M-15-type β-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005 – the new ‘MRSAs’? J Antimicrob Chemother 62, 978–985.[CrossRef]
    [Google Scholar]
  7. Diancourt, L., Passet, V., Verhoef, J., Grimont, P. A. & Brisse, S. ( 2005; ). Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43, 4178–4182.[CrossRef]
    [Google Scholar]
  8. Elhani, D., Bakir, L., Aouni, M., Passet, V., Arlet, G., Brisse, S. & Weill, F. X. ( 2010; ). Molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae strains in a university hospital in Tunis, Tunisia, 1999–2005. Clin Microbiol Infect 16, 157–164.[CrossRef]
    [Google Scholar]
  9. Feil, E. J., Li, B. C., Aanensen, D. M., Hanage, W. P. & Spratt, B. G. ( 2004; ). eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing. J Bacteriol 186, 1518–1530.[CrossRef]
    [Google Scholar]
  10. Girlich, D., Poirel, L., Leelaporn, A., Karim, A., Tribuddharat, C., Fennewald, M. & Nordmann, P. ( 2001; ). Molecular epidemiology of the integron-located VEB-1 extended spectrum β-lactamase in nosocomial enterobacterial isolates in Bangkok, Thailand. J Clin Microbiol 39, 175–182.[CrossRef]
    [Google Scholar]
  11. Jeong, S. H., Bae, I. K., Kwon, S. B., Lee, J. H., Jung, H. I., Song, J. S., Jeong, B. C., Kim, S. J. & Lee, S. H. ( 2004; ). Investigation of extended-spectrum β-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli in Korea. Lett Appl Microbiol 39, 41–47.[CrossRef]
    [Google Scholar]
  12. Jones, M. E., Karlowsky, J. A., Draghi, D. C., Thornberry, C., Sahm, D. F. & Bradley, J. S. ( 2004; ). Rates of antimicrobial resistance among common bacterial pathogens causing respiratory, blood, urine, and skin and soft tissue infections in pediatric patients. Eur J Clin Microbiol Infect Dis 23, 445–455.[CrossRef]
    [Google Scholar]
  13. Kim, J., Lim, Y. M., Rheem, I., Lee, Y., Lee, J. C., Seol, S. Y., Lee, Y. C. & Cho, D. T. ( 2005; ). CTX-M and SHV-12 β-lactamases are the most common extended-spectrum enzymes in clinical isolates of Escherichia coli and Klebsiella pneumoniae collected from 3 university hospitals within Korea. FEMS Microbiol Lett 245, 93–98.[CrossRef]
    [Google Scholar]
  14. Ko, K. S., Lee, M. Y., Song, J. H., Lee, H., Jung, D. S., Jung, S. I., Kim, S. W., Chang, H. H., Yeom, J. S. & other authors ( 2008a; ). Prevalence and characterization of extended-spectrum β-lactamase-producing Enterobacteriaceae isolated in Korean hospitals. Diagn Microbiol Infect Dis 61, 453–459.[CrossRef]
    [Google Scholar]
  15. Ko, K. S., Yeom, J. S., Lee, M. Y., Peck, K. R. & Song, J. H. ( 2008b; ). Clonal dissemination of extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae isolates in a Korean hospital. J Korean Med Sci 23, 53–60.
    [Google Scholar]
  16. Kolar, M., Latal, T., Cermak, P., Bartonikova, N., Chmelarova, E., Sauer, P. & Kesselova, M. ( 2006; ). Prevalence of extended-spectrum β-lactamase-positive Klebsiella pneumoniae isolates in the Czech Republic. Int J Antimicrob Agents 28, 49–53.
    [Google Scholar]
  17. Lee, K., Chong, Y., Shin, H. B., Kim, Y. A., Yong, D. & Yum, J. H. ( 2001; ). Modified-Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonase and Acinetobacter species. Clin Microbiol Infect 7, 88–91.[CrossRef]
    [Google Scholar]
  18. Livermore, D. M., Canton, R., Gniadkowski, M., Nordmann, P., Rossolini, G. M., Arlet, G., Ayala, J., Coque, T. M., Kern-Zdanowicz, I. & other authors ( 2007; ). CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59, 165–174.
    [Google Scholar]
  19. Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K. & other authors ( 1998; ). Multilocus sequence typing: a portable approach to identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95, 3140–3145.[CrossRef]
    [Google Scholar]
  20. Oteo, J., Cuevas, O., López-Rodríguez, I., Banderas-Florido, A., Vindel, A., Pérez-Vázquez, M., Bautista, V., Arroyo, M., García-Caballero, J. & other authors ( 2009; ). Emergence of CTX-M-15-producing Klebsiella pneumoniae of multilocus sequence types 1, 11, 14, 17, 20, 35 and 36 as pathogens and colonizers in newborns and adults. J Antimicrob Chemother 64, 524–528.[CrossRef]
    [Google Scholar]
  21. Poirel, L., Lartigue, M.-F., Decousser, J.-W. & Nordmann, P. ( 2005; ). ISEcp1B-mediated transposition of bla CTX-M in Escherichia coli. Antimicrob Agents Chemother 49, 447–450.[CrossRef]
    [Google Scholar]
  22. Ryoo, N. H., Kim, E. C., Hong, S. G., Park, Y. J., Lee, K., Bae, I. K., Song, E. H. & Jeong, S. H. ( 2005; ). Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother 56, 698–702.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.018119-0
Loading
/content/journal/jmm/10.1099/jmm.0.018119-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error