1887

Abstract

Isoniazid and rifampicin resistance are assayed phenotypically by the resistance ratio, absolute concentration or proportion methods. Assay methods are often difficult to standardise and the World Health Organization (WHO) Global Programme on Drug Resistance is attempting to produce standardised drug resistance data worldwide. Broth-based methods are faster than solid media systems, and a commercial radiometric system, the Bactec 460, is arguably the fastest method and permits testing to be completed within 7–14 days; however, this method is expensive and requires disposal of radioactive material. Novel phenotypic methods that utilise mycobacteriophages have shown promise. Other molecular detection systems require knowledge of the genes encoding the drug target (the and genes for isoniazid; for rifampicin) and the mutations producing resistance. These genotypic methods are limited in that not all resistance mechanisms are known, but advanced assays for rifampicin resistance that use gene sequencing, heteroduplex analysis, solid-phase hybridisation or single-strand conformation polymorphism analysis are becoming available.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-47-3-189
1998-03-01
2021-12-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/47/3/medmicro-47-3-189.html?itemId=/content/journal/jmm/10.1099/00222615-47-3-189&mimeType=html&fmt=ahah

References

  1. Dolin P. J., Raviglione M. C., Kochi A. Global tuberculosis incidence and mortality during 1990-2000. Bull World Health Organ 1994; 72:213–220
    [Google Scholar]
  2. Sudre P., ten Dam G., Kochi A. Tuberculosis: a global overview of the situation today. Bull World Health Organ 1992; 70:149–159
    [Google Scholar]
  3. Raviglione M. C., Snider D. E., Kochi A. Global epidemiology of tuberculosis-Morbidity and mortality of a worldwide epidemic. JAMA 1995; 273:220–226
    [Google Scholar]
  4. Drobniewski F. A., Pablos-Mendes A., Raviglione M. Epidemiology of tuberculosis in the world today. Semin Respir Crit Care Med 1998 (in press)
    [Google Scholar]
  5. Drobniewski F. A. Is death inevitable with multiresistant TB plus HIV infection?. Lancet 1997; 349:71–72
    [Google Scholar]
  6. De Cock K. M., Soro B., Coulibaly I. M., Lucas S. B. Tuberculosis and HIV infection in Sub-Saharan Africa. JAMA 1992; 268:1581–1587
    [Google Scholar]
  7. Cohn D. L., Bustreo F., Raviglione M. C. Drug-resistant tuberculosis: review of the worldwide situation and the WHO/IUATLD Global Surveillance Project. Clin Infect Dis 1997; 24: Suppl 1S121–S130
    [Google Scholar]
  8. Canetti G., Froman S., Grosset J. Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bull World Health Organ 1963; 29:565–578
    [Google Scholar]
  9. Canetti G., Fox W., Khomenko A. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull World Health Organ 1969; 41:21–43
    [Google Scholar]
  10. Vareldzis B. P., Grosset J., de Kantor I. Drug-resistant tuberculosis: laboratory issues. World Health Organization recommendations. Tuber Lung Dis 1994; 75:1–7
    [Google Scholar]
  11. Telenti A., Imboden P., Marchesi F. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993; 341:647–650
    [Google Scholar]
  12. Kapur V., Li L. L., Hamrick M. R. Rapid Mycobacterium species assignments and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med 1995; 119:131–138
    [Google Scholar]
  13. Miller L. P., Crawford J. T., Shinnick T. M. The rpoB gene of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1994; 38:805–811
    [Google Scholar]
  14. Musser J. M. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev 1995; 8:496–514
    [Google Scholar]
  15. Cooksey R. C., Morlock G. P., Glickman S., Crawford J. T. Evaluation of a line probe assay kit for characterization of rpoB mutations in rifampicin-resistant Mycobacterium tuberculosis isolates from New York City. J Clin Microbiol 1997; 35:1281–1283
    [Google Scholar]
  16. Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 1992; 358:591–593
    [Google Scholar]
  17. Banerjee A., Dubnau E., Quemard A. InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 1994; 263:227–230
    [Google Scholar]
  18. Heym B., Zhang Y., Poulet S., Young D., Cole S. T. Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol 1993; 175:4255–4259
    [Google Scholar]
  19. Heym B., Honoré N., Truffot-Pemot C. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet 1994; 344:293–298
    [Google Scholar]
  20. Heym B., Alzari P. M., Honoré N., Cole S. T. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol 1995; 15:235–245
    [Google Scholar]
  21. Wilson T. M., de Lisle G. W., Collins D. M. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microbiol 1995; 15:1009–1015
    [Google Scholar]
  22. Rouse D. A., Li Z., Bai G. H., Morris S. L. Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1995; 39:2472–2477
    [Google Scholar]
  23. Morris S., Bai G. H., Suffys P., Portillo-Gomez L., Fairchok M., Rouse D. Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis. J Infect Dis 1995; 171:954–960
    [Google Scholar]
  24. Telenti A., Honoré N., Bernasconi C. Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis-a blind study at reference laboratory level. J Clin Microbiol 1997; 35:719–723
    [Google Scholar]
  25. Cooksey R. C., Morlock G. P., McQueen A., Glickman S. E., Crawford J. T. Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City. Antimicrob Agents Chemother 1996; 40:1186–1188
    [Google Scholar]
  26. Finken M., Kirschner P., Meier A., Wrede A., Böttger E. C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol 1993; 9:1239–1246
    [Google Scholar]
  27. Nair J., Rouse D. A., Bai G.-H., Morris S. L. The rpsL gene and streptomycin resistance in single and multiple drug-resistance strains of Mycobacterium tuberculosis. Mol Microbiol 1993; 10:521–527
    [Google Scholar]
  28. Meier A., Kirschner P., Bange F. C., Vogel U., Bottger E. C. Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob Agents Chemother 1994; 38:228–233
    [Google Scholar]
  29. Takiff H. E., Salazar L., Guerrero C. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 1994; 38:773–780
    [Google Scholar]
  30. Williams D. L., Waguespack C., Eisenach K. Characterization of rifampicin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother 1994; 38:2380–2386
    [Google Scholar]
  31. Saiki R. K., Walsh P. S., Levenson C. H., Erlich H. A. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA 1989; 86:6230–6234
    [Google Scholar]
  32. De Beenhouwer H., Lhiang Z., Jannes G. Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tuber Lung Dis 1995; 76:425–430
    [Google Scholar]
  33. Telenti A., Imboden P., Marchesi F., Schmidheini T., Bodmer T. Direct, automated detection of rifampicin-resistant Mycobacterium tuberculosis by polymerase chain reaction and singlestrand conformation polymorphism analysis. Antimicrob Agents Chemother 1993; 37:2054–2058
    [Google Scholar]
  34. Middlebrook G., Reggiardo Z., Tigertt W. D. Automatable radiometric detection of growth of Mycobacterium tuberculosis in selective media. Am Rev Respir Dis 1977; 115:1066–1069
    [Google Scholar]
  35. Resiner B. S., Gatson A. M., Woods G. L. Evaluation of mycobacteria growth indicator tubes for susceptibility testing of Mycobacterium tuberculosis to isoniazid and rifampicin. Diagn Microbiol Infect Dis 1995; 22:325–329
    [Google Scholar]
  36. Pfyffer G. E., Welscher H.-M., Kissling P. Comparison of the Mycobacteria Growth Indicator Tube (MGIT) with radiometric and solid culture for recovery of acid-fast bacilli. J Clin Microbiol 1997; 35:364–368
    [Google Scholar]
  37. Heifets L. B. Drug susceptibility testing. In Heifets L. B. (ed) Clinics in laboratory medicine Philadelphia: Saunders; 1996641–656
    [Google Scholar]
  38. Jacobs W. R., Barletta R. G., Udani R. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 1993; 260:819–822
    [Google Scholar]
  39. Wilson S. M., Al-Suwaidi Z., McNerney R., Porter J., Drobniewski F. Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nature Medicine 1997; 3:465–468
    [Google Scholar]
  40. David H. L. Probability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosis. Appl Microbiol 1970; 20:810–814
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-47-3-189
Loading
/content/journal/jmm/10.1099/00222615-47-3-189
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error