1887

Abstract

Inhibition of cell-surface expression of major histocompatibility complex class I molecules by human cytomegalovirus (HCMV, a -herpesvirus) promotes escape from recognition by CD8 cytotoxic T cells. The HCMV US2 and US11 gene products induce class I downregulation during the early phase of HCMV infection by facilitating the degradation of class I heavy chains. The HCMV proteins promote the transport of the class I heavy chains across the endoplasmic reticulum (ER) membrane into the cytosol by a process referred to as ‘dislocation’, which is then followed by proteasome degradation. This process has striking similarities to the degradation of misfolded ER proteins mediated by ER quality control. Even though the major steps of the dislocation reaction have been characterized, the cellular proteins, specifically the ER chaperones involved in targeting class I for dislocation, have not been fully delineated. To elucidate the chaperones involved in HCMV-mediated class I dislocation, we utilized a chimeric class I heavy chain with an affinity tag at its carboxy terminus. Interestingly, US2 but not US11 continued to target the class I chimera for destruction, suggesting a structural limitation for US11-mediated degradation. Association studies in US2 cells and in cells that express a US2 mutant, US2–186HA, revealed that class I specifically interacts with calnexin, BiP and calreticulin. These findings demonstrate that US2-mediated class I destruction utilizes specific chaperones to facilitate class I dislocation. The data suggest a more general model in which the chaperones that mediate protein folding may also function during ER quality control to eliminate aberrant ER proteins.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83516-0
2008-05-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/5/1122.html?itemId=/content/journal/jgv/10.1099/vir.0.83516-0&mimeType=html&fmt=ahah

References

  1. Aridor, M. & Hannan, L. A. ( 2002; ). Traffic jams II: an update of diseases of intracellular transport. Traffic 3, 781–790.[CrossRef]
    [Google Scholar]
  2. Brodsky, J. L. ( 2007; ). The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic-reticulum-associated degradation). Biochem J 404, 353–363.[CrossRef]
    [Google Scholar]
  3. Fiebiger, E., Story, C., Ploegh, H. L. & Tortorella, D. ( 2002; ). Visualization of the ER-to-cytosol dislocation reaction of a type I membrane protein. EMBO J 21, 1041–1053.[CrossRef]
    [Google Scholar]
  4. Friedlander, R., Jarosch, E., Urban, J., Volkwein, C. & Sommer, T. ( 2000; ). A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2, 379–384.[CrossRef]
    [Google Scholar]
  5. Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M. & other authors ( 2002; ). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147.[CrossRef]
    [Google Scholar]
  6. Gewurz, B. E., Gaudet, R., Tortorella, D., Wang, E. W., Ploegh, H. L. & Wiley, D. C. ( 2001; ). Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sci U S A 98, 6794–6799.[CrossRef]
    [Google Scholar]
  7. Harlow, E., Franza, B. R., Jr & Schley, C. ( 1985; ). Monoclonal antibodies specific for adenovirus early region 1A proteins: extensive heterogeneity in early region 1A products. J Virol 55, 533–546.
    [Google Scholar]
  8. Harris, M. R., Yu, Y. Y., Kindle, C. S., Hansen, T. H. & Solheim, J. C. ( 1998; ). Calreticulin and calnexin interact with different protein and glycan determinants during the assembly of MHC class I. J Immunol 160, 5404–5409.
    [Google Scholar]
  9. Hegde, N. R., Chevalier, M. S., Wisner, T. W., Denton, M. C., Shire, K., Frappier, L. & Johnson, D. C. ( 2006; ). The role of BiP in endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain induced by cytomegalovirus proteins. J Biol Chem 281, 20910–20919.[CrossRef]
    [Google Scholar]
  10. Hewitt, E. W. ( 2003; ). The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110, 163–169.[CrossRef]
    [Google Scholar]
  11. Hiller, M. M., Finger, A., Schweiger, M. & Wolf, D. H. ( 1996; ). ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273, 1725–1728.[CrossRef]
    [Google Scholar]
  12. Hochstenbach, F., David, V., Watkins, S. & Brenner, M. B. ( 1992; ). Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T- and B-cell antigen receptors and major histocompatibility complex antigens during their assembly. Proc Natl Acad Sci U S A 89, 4734–4738.[CrossRef]
    [Google Scholar]
  13. Hochstrasser, M. & Varshavsky, A. ( 1990; ). In vivo degradation of a transcriptional regulator: the yeast alpha 2 repressor. Cell 61, 697–708.[CrossRef]
    [Google Scholar]
  14. Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A. & Nagata, K. ( 2001; ). A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2, 415–422.[CrossRef]
    [Google Scholar]
  15. Johnston, J. A., Ward, C. L. & Kopito, R. R. ( 1998; ). Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143, 1883–1898.[CrossRef]
    [Google Scholar]
  16. Kabani, M., Kelley, S. S., Morrow, M. W., Montgomery, D. L., Sivendran, R., Rose, M. D., Gierasch, L. M. & Brodsky, J. L. ( 2003; ). Dependence of endoplasmic reticulum-associated degradation on the peptide binding domain and concentration of BiP. Mol Biol Cell 14, 3437–3448.[CrossRef]
    [Google Scholar]
  17. Lin, A., Xu, H. & Yan, W. ( 2007; ). Modulation of HLA expression in human cytomegalovirus immune evasion. Cell Mol Immunol 4, 91–98.
    [Google Scholar]
  18. Loureiro, J. & Ploegh, H. L. ( 2006; ). Antigen presentation and the ubiquitin-proteasome system in host-pathogen interactions. Adv Immunol 92, 225–305.
    [Google Scholar]
  19. McCracken, A. A. & Brodsky, J. L. ( 1996; ). Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol 132, 291–298.[CrossRef]
    [Google Scholar]
  20. McCracken, A. A. & Brodsky, J. L. ( 2005; ). Recognition and delivery of ERAD substrates to the proteasome and alternative paths for cell survival. Curr Top Microbiol Immunol 300, 17–40.
    [Google Scholar]
  21. Molinari, M., Galli, C., Piccaluga, V., Pieren, M. & Paganetti, P. ( 2002; ). Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol 158, 247–257.[CrossRef]
    [Google Scholar]
  22. Molinari, M., Calanca, V., Galli, C., Lucca, P. & Paganetti, P. ( 2003; ). Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299, 1397–1400.[CrossRef]
    [Google Scholar]
  23. Nishikawa, S. I., Fewell, S. W., Kato, Y., Brodsky, J. L. & Endo, T. ( 2001; ). Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153, 1061–1070.[CrossRef]
    [Google Scholar]
  24. Noiva, R. & Lennarz, W. J. ( 1992; ). Protein disulfide isomerase. J Biol Chem 267, 3553–3556.
    [Google Scholar]
  25. Oresic, K., Noriega, V., Andrews, L. & Tortorella, D. ( 2006; ). A structural determinant of human cytomegalovirus US2 dictates the down-regulation of class I major histocompatibility molecules. J Biol Chem 281, 19395–19406.[CrossRef]
    [Google Scholar]
  26. Pamer, E. & Cresswell, P. ( 1998; ). Mechanisms of MHC class I–restricted antigen processing. Annu Rev Immunol 16, 323–358.[CrossRef]
    [Google Scholar]
  27. Parham, P., Barnstable, C. J. & Bodmer, W. F. ( 1979; ). Use of a monoclonal antibody (W6/32) in structural studies of HLA-A,B,C, antigens. J Immunol 123, 342–349.
    [Google Scholar]
  28. Plemper, R. K., Bohmler, S., Bordallo, J., Sommer, T. & Wolf, D. H. ( 1997; ). Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388, 891–895.[CrossRef]
    [Google Scholar]
  29. Popescu, C. I., Paduraru, C., Dwek, R. A. & Petrescu, S. M. ( 2005; ). Soluble tyrosinase is an endoplasmic reticulum (ER)-associated degradation substrate retained in the ER by calreticulin and BiP/GRP78 and not calnexin. J Biol Chem 280, 13833–13840.[CrossRef]
    [Google Scholar]
  30. Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M. & Seraphin, B. ( 2001; ). The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229.[CrossRef]
    [Google Scholar]
  31. Rehm, A., Stern, P., Ploegh, H. L. & Tortorella, D. ( 2001; ). Signal peptide cleavage of a type I membrane protein, HCMV US11, is dependent on its membrane anchor. EMBO J 20, 1573–1582.[CrossRef]
    [Google Scholar]
  32. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. & Seraphin, B. ( 1999; ). A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17, 1030–1032.[CrossRef]
    [Google Scholar]
  33. Romisch, K. & Schekman, R. ( 1992; ). Distinct processes mediate glycoprotein and glycopeptide export from the endoplasmic reticulum in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89, 7227–7231.[CrossRef]
    [Google Scholar]
  34. Sitia, R. & Braakman, I. ( 2003; ). Quality control in the endoplasmic reticulum protein factory. Nature 426, 891–894.[CrossRef]
    [Google Scholar]
  35. Story, C. M., Furman, M. H. & Ploegh, H. L. ( 1999; ). The cytosolic tail of class I MHC heavy chain is required for its dislocation by the human cytomegalovirus US2 and US11 gene products. Proc Natl Acad Sci U S A 96, 8516–8521.[CrossRef]
    [Google Scholar]
  36. Tirosh, B., Furman, M. H., Tortorella, D. & Ploegh, H. L. ( 2003; ). Protein unfolding is not a prerequisite for endoplasmic reticulum-to-cytosol dislocation. J Biol Chem 278, 6664–6672.[CrossRef]
    [Google Scholar]
  37. Tortorella, D., Story, C. M., Huppa, J. B., Wiertz, E. J., Jones, T. R., Bacik, I., Bennink, J. R., Yewdell, J. W. & Ploegh, H. L. ( 1998; ). Dislocation of type I membrane proteins from the ER to the cytosol is sensitive to changes in redox potential. J Cell Biol 142, 365–376.[CrossRef]
    [Google Scholar]
  38. Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J. & Ploegh, H. L. ( 2000; ). Viral subversion of the immune system. Annu Rev Immunol 18, 861–926.[CrossRef]
    [Google Scholar]
  39. Townsend, A. & Bodmer, H. ( 1989; ). Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunol 7, 601–624.[CrossRef]
    [Google Scholar]
  40. Trgovcich, J., Cebulla, C., Zimmerman, P. & Sedmak, D. D. ( 2006; ). Human cytomegalovirus protein pp71 disrupts major histocompatibility complex class I cell surface expression. J Virol 80, 951–963.[CrossRef]
    [Google Scholar]
  41. Tsai, B., Rodighiero, C., Lencer, W. I. & Rapoport, T. A. ( 2001; ). Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104, 937–948.[CrossRef]
    [Google Scholar]
  42. Whiteside, S. T., Ernst, M. K., LeBail, O., Laurent-Winter, C., Rice, N. & Israel, A. ( 1995; ). N- and C-terminal sequences control degradation of MAD3/IκBα in response to inducers of NF-κB activity. Mol Cell Biol 15, 5339–5345.
    [Google Scholar]
  43. Wiertz, E. J., Jones, T. R., Sun, L., Bogyo, M., Geuze, H. J. & Ploegh, H. L. ( 1996a; ). The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779.[CrossRef]
    [Google Scholar]
  44. Wiertz, E. J., Tortorella, D., Bogyo, M., Yu, J., Mothes, W., Jones, T. R., Rapoport, T. A. & Ploegh, H. L. ( 1996b; ). Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438.[CrossRef]
    [Google Scholar]
  45. Ye, Y., Meyer, H. H. & Rapoport, T. A. ( 2001; ). The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83516-0
Loading
/content/journal/jgv/10.1099/vir.0.83516-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1122 - 1130

Detection of HC–CTAP in U373 transducants

Calnexin interacts exclusively with HC–CTAP from US2 cells

Calnexin and BiP are expressed at the same levels in U373, U373 , US2 and US2–186HA cells

PDI does not interact with HC–CTAP from US2 cells

Calnexin and BiP are major proteins that associate with HC–CTAP [Single PDF file](179 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error