1887

Abstract

Herpes simplex virus type 1 (HSV-1) is a ubiquitous human pathogen. The sequence of HSV-1 is the -acting site required for the cleavage and encapsidation of unit-length HSV-1 DNA from concatemeric forms. The consensus sequence consists of (i) DR1 (direct repeat 1), (ii) Ub, (iii) a DR2 array [a repeat of various copy numbers of DR2 elements (11 or 12 bp)], (iv) a DR4 stretch and (v) Uc. In the present study, the nucleotide sequences of the sequences of 26 HSV-1 isolates were determined and the DR4 stretches were classified into three groups. The state of a set of 20 DNA polymorphisms in the genomes of these HSV-1 isolates was determined previously. A correct classification rate of 100 % was achieved when discriminant analysis was performed between the DR4 stretch (criterion variable) and the set of 20 DNA polymorphisms (predictor variables), suggesting a close association of the DR4 stretch with HSV-1 diversification. DR2 elements of 9, 13 and 14 bp were detected in addition to those of 11 and 12 bp, and a correct classification rate of 93 % was achieved when discriminant analysis was performed between the DR2 array and the set of 20 DNA polymorphisms. Some DR2 elements of one HSV-1 isolate had the same nucleotide sequences as part of the adjacent DR4 stretch, and these variations were adequately explained by postulating recombination involving DR2 elements; hence, the DR2 array was deduced to be prone to recombination.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83467-0
2008-04-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/841.html?itemId=/content/journal/jgv/10.1099/vir.0.83467-0&mimeType=html&fmt=ahah

References

  1. Adelman, K., Salmon, B. & Baines, J. D. ( 2001; ). Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery. Proc Natl Acad Sci U S A 98, 3086–3091.[CrossRef]
    [Google Scholar]
  2. Baines, J. D. & Weller, S. K. ( 2005; ). Cleavage and packaging of herpes simplex virus 1 DNA. In Viral Genome Packaging Machines: Genetic, Structure, and Mechanism, pp. 135–150. Edited by C. E. Catalano. Georgetown & New York: Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers.
  3. Bowden, R. J. & McGeoch, D. J. ( 2006; ). Evolution of herpes simplex viruses. In Herpes Simplex Viruses, pp. 1–34. Edited by M. Studahl, P. Cinque & T. Bergström. New York: Taylor & Francis Group.
  4. Bowden, R., Sakaoka, H., Donnelly, P. & Ward, P. ( 2004; ). High recombination rate in herpes simplex virus type 1 natural populations suggests significant co-infection. Infect Genet Evol 4, 115–123.[CrossRef]
    [Google Scholar]
  5. Bowden, R., Sakaoka, H., Ward, P. & Donnelly, P. ( 2006; ). Patterns of Eurasian HSV-1 molecular diversity and inferences of human migrations. Infect Genet Evol 6, 63–74.[CrossRef]
    [Google Scholar]
  6. Brown, S. M. & MacLean, A. R. ( 1998; ). Herpes Simplex Virus Protocols. Totowa: Human Press.
  7. Chou, J. & Roizman, B. ( 1985; ). Isomerization of herpes simplex virus 1 genome: identification of the cis-acting and recombination sites within the domain of the a sequence. Cell 41, 803–811.[CrossRef]
    [Google Scholar]
  8. Chou, J. & Roizman, B. ( 1986; ). The terminal a sequence of the herpes simplex virus genome contains the promoter of a gene located in the repeat sequences of the L component. J Virol 57, 629–637.
    [Google Scholar]
  9. Davison, A. J. & McGeoch, D. J. ( 1995; ). Herpesviridae. In Molecular Basis of Virus Evolution, pp. 290–309. Edited by A. J. Gibbs, C. H. Calisher & F. García-Arenal. Cambridge: Cambridge University Press.
  10. Davison, A. J. & Wilkie, N. M. ( 1981; ). Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. J Gen Virol 53, 315–331.
    [Google Scholar]
  11. Deiss, L. P., Chou, J. & Frenkel, N. ( 1986; ). Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J Virol 59, 605–618.
    [Google Scholar]
  12. Gentry, G. A., Lowe, M., Alford, G. & Nevins, R. ( 1988; ). Sequence analyses of herpesviral enzymes suggests an ancient origin for human sexual behavior. Proc Natl Acad Sci U S A 85, 2658–2661.[CrossRef]
    [Google Scholar]
  13. Hodge, P. D. & Stow, N. D. ( 2001; ). Effects of mutations within the herpes simplex virus type 1 DNA encapsidation signal on packaging efficiency. J Virol 75, 8977–8986.[CrossRef]
    [Google Scholar]
  14. Huberty, C. J. ( 1994; ). Applied Discriminant Analysis. New York: John Wiley & Sons Inc.
  15. Lehman, A., O'Rourke, N., Hatcher, L. & Stepanski, E. J. ( 2005; ). JMP for Basic Univariate and Multivariate Statistics: a Step-by-Step Guide. Cary: SAS Institute Inc.
  16. MacLean, A. R., Ul-Fareed, M., Robertson, L., Harland, J. & Brown, S. M. ( 1991; ). Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. J Gen Virol 72, 631–639.[CrossRef]
    [Google Scholar]
  17. Martin, D. W. & Weber, P. C. ( 1998; ). Role of the DR2 repeat array in the regulation of the ICP34.5 gene promoter of herpes simplex virus type 1 during productive infection. J Gen Virol 79, 517–523.
    [Google Scholar]
  18. Mata-Toledo, R. A. & Cushman, P. K. ( 2000; ). Fundamentals of Relational Databases. New York: McGraw-Hill.
  19. McGeoch, D. J. & Cook, S. ( 1994; ). Molecular phylogeny of the Alphaherpesvirinae subfamily and a proposed evolutionary timescale. J Mol Biol 238, 9–22.[CrossRef]
    [Google Scholar]
  20. McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., Perry, L. J., Scott, J. E. & Taylor, P. ( 1988; ). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69, 1531–1574.[CrossRef]
    [Google Scholar]
  21. McGeoch, D. J., Cook, S., Dolan, A., Jamieson, F. E. & Telford, E. A. R. ( 1995; ). Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J Mol Biol 247, 443–458.[CrossRef]
    [Google Scholar]
  22. Mocarski, E. S. & Roizman, B. ( 1981; ). Site-specific inversion sequence of the herpes simplex virus genome: domain and structural features. Proc Natl Acad Sci U S A 78, 7047–7051.[CrossRef]
    [Google Scholar]
  23. Mocarski, E. S. & Roizman, B. ( 1982; ). Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31, 89–97.[CrossRef]
    [Google Scholar]
  24. Mocarski, E. S., Post, L. E. & Roizman, B. ( 1980; ). Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22, 243–255.[CrossRef]
    [Google Scholar]
  25. Mocarski, E. S., Deiss, L. P. & Frenkel, N. ( 1985; ). Nucleotide sequence and structural features of a novel US-a junction present in a defective herpes simplex virus genome. J Virol 55, 140–146.
    [Google Scholar]
  26. Nahmias, A. J., Lee, F. K. & Beckman-Nahmias, S. ( 2006; ). The natural history and epidemiology of herpes simplex viruses. In Herpes Simplex Viruses, pp. 55–97. Edited by M. Studahl, P. Cinque & T. Bergström. New York: Taylor & Francis Group.
  27. Norberg, P., Bergström, T., Rekabdar, E., Lindh, M. & Liljeqvist, J. Å. ( 2004; ). Phylogenetic analysis of clinical herpes simplex virus type 1 isolates identified three genetic groups and recombinant viruses. J Virol 78, 10755–10764.[CrossRef]
    [Google Scholar]
  28. Norberg, P., Bergström, T. & Liljeqvist, J. Å. ( 2006; ). Genotyping of clinical herpes simplex virus type 1 isolates by use of restriction enzymes. J Clin Microbiol 44, 4511–4514.[CrossRef]
    [Google Scholar]
  29. Norberg, P., Olofsson, S., Tarp, M. A., Clausen, H., Bergström, T. & Liljeqvist, J. Å. ( 2007; ). Glycoprotein I of herpes simplex virus type 1 contains a unique polymorphic tandem-repeated mucin region. J Gen Virol 88, 1683–1688.[CrossRef]
    [Google Scholar]
  30. Sakaoka, H., Kurita, K., Iida, Y., Takada, S., Umene, K., Kim, Y. T., Ren, C. S. & Nahmias, A. J. ( 1994; ). Quantitative analysis of genomic polymorphism of herpes simplex virus type 1 strains from six countries: studies of molecular evolution and molecular epidemiology of the virus. J Gen Virol 75, 513–527.[CrossRef]
    [Google Scholar]
  31. Sall, J., Creighton, L. & Lehman, A. ( 2005; ). JMP Start Statistics, 3rd edn. Cary: SAS Institute Inc.
  32. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  33. Sarisky, R. T. & Weber, P. C. ( 1994; ). Role of anisomorphic DNA conformations in negative regulation of a herpes simplex virus type 1 promoter. Virology 204, 569–579.[CrossRef]
    [Google Scholar]
  34. Sharma, S. ( 1996; ). Applied Multivariate Techniques. New York: John Wiley & Sons Inc.
  35. Smiley, J. R., Fong, B. S. & Leung, W.-C. ( 1981; ). Construction of a double-joined herpes simplex viral DNA molecule: inverted repeats are required for segment inversion, and direct repeats promote deletions. Virology 113, 345–362.[CrossRef]
    [Google Scholar]
  36. Smiley, J. R., Duncan, J. & Howes, M. ( 1990; ). Sequence requirements for DNA rearrangements induced by the terminal repeat of herpes simplex virus type 1 KOS DNA. J Virol 64, 5036–5050.
    [Google Scholar]
  37. Umene, K. ( 1991; ). Recombination of the internal direct repeat element DR2 responsible for the fluidity of the a sequence of herpes simplex virus type 1. J Virol 65, 5410–5416.
    [Google Scholar]
  38. Umene, K. ( 1993; ). Herpes simplex virus type 1 variant a sequence generated by recombination and breakage of the a sequence in defined regions, including the one involved in recombination. J Virol 67, 5685–5691.
    [Google Scholar]
  39. Umene, K. ( 1998; ). Herpesvirus: Genetic Variability and Recombination. Fukuoka: Touka Shobo.
  40. Umene, K. ( 1999; ). Mechanism and application of genetic recombination in herpesviruses. Rev Med Virol 9, 171–182.[CrossRef]
    [Google Scholar]
  41. Umene, K. & Kawana, T. ( 2003; ). Divergence of reiterated sequences in a series of genital isolates of herpes simplex virus type 1 from individual patients. J Gen Virol 84, 917–923.[CrossRef]
    [Google Scholar]
  42. Umene, K. & Sakaoka, H. ( 1997; ). Populations of two Eastern countries of Japan and Korea and with a related history share a predominant genotype of herpes simplex virus type 1. Arch Virol 142, 1953–1961.[CrossRef]
    [Google Scholar]
  43. Umene, K. & Sakaoka, H. ( 1999; ). Evolution of herpes simplex virus type 1 under herpseviral evolutionary processes. Arch Virol 144, 637–656.[CrossRef]
    [Google Scholar]
  44. Umene, K. & Yoshida, M. ( 1993; ). Genomic characterization of two predominant genotypes of herpes simplex virus type 1. Arch Virol 131, 29–46.[CrossRef]
    [Google Scholar]
  45. Umene, K., Koga, C. & Kameyama, T. ( 2007; ). Discriminant analysis of DNA polymorphisms in herpes simplex virus type 1 strains involved in primary compared to recurrent infections. J Virol Methods 139, 159–165.[CrossRef]
    [Google Scholar]
  46. Varmuza, S. L. & Smiley, J. R. ( 1985; ). Signals for site-specific cleavage of HSV DNA: maturation involves two separate cleavage events at sites distal to the recognition sequences. Cell 41, 793–802.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83467-0
Loading
/content/journal/jgv/10.1099/vir.0.83467-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error