1887

Abstract

Exogenous introduction of particle-associated proteins of human cytomegalovirus (HCMV) into the major histocompatibility complex (MHC) class I presentation pathway by subviral dense bodies (DB) is an effective way to sensitize cells against CD8 T-cell (CTL) recognition and killing. Consequently, these particles have been proposed as a platform for vaccine development. We have developed a strategy to refine the antigenic composition of DB. For proof of principle, an HCMV recombinant (RV-VM3) was generated that encoded the immunodominant CTL determinant IE1 from the IE1 protein in fusion with the major constituent of DB, the tegument protein pp65. To generate RV-VM3, a bacterial artificial chromosome containing the HCMV genome was modified by applying positive/negative selection based on the expression of the bacterial galactokinase in conjunction with Red-mediated homologous recombination. This method allowed the efficient and seamless insertion of the DNA sequence encoding IE1 in frame into the pp65 open reading frame (UL83) of the viral genome. RV-VM3 expressed its fusion protein to high levels. The fusion protein was packaged into DB and into virions. Its delivery into fibroblasts by these viral particles led to the loading of the MHC class I presentation pathway with IE1 and to efficient killing by specific CTLs. This demonstrated that a heterologous peptide, not naturally present in HCMV particles, can be processed from a recombinant, DB-derived protein to be subsequently presented by MHC class I. The results presented here provide a rationale for the optimization of a vaccine based on recombinant DB.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83380-0
2008-02-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/2/369.html?itemId=/content/journal/jgv/10.1099/vir.0.83380-0&mimeType=html&fmt=ahah

References

  1. Andreoni, M., Faircloth, M., Vugler, L. & Britt, W. J. ( 1989; ). A rapid microneutralization assay for the measurement of neutralizing antibody reactive with human cytomegalovirus. J Virol Methods 23, 157–167.[CrossRef]
    [Google Scholar]
  2. Beninga, J., Kropff, B. & Mach, M. ( 1995; ). Comparative analysis of fourteen individual human cytomegalovirus proteins for helper T cell response. J Gen Virol 76, 153–160.[CrossRef]
    [Google Scholar]
  3. Besold, K., Frankenberg, N., Pepperl-Klindworth, S., Kuball, J., Theobald, M., Hahn, G. & Plachter, B. ( 2007; ). Processing and MHC class I presentation of human cytomegalovirus pp65-derived peptides persist despite gpUS2–11-mediated immune evasion. J Gen Virol 88, 1429–1439.[CrossRef]
    [Google Scholar]
  4. Borst, E. M., Hahn, G., Koszinowski, U. H. & Messerle, M. ( 1999; ). Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J Virol 73, 8320–8329.
    [Google Scholar]
  5. Borysiewicz, L. K., Hickling, J. K., Graham, S., Sinclair, J., Cranage, M. P., Smith, G. L. & Sissons, J. G. ( 1988; ). Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate early protein and glycoprotein B expressed by recombinant vaccinia viruses. J Exp Med 168, 919–931.[CrossRef]
    [Google Scholar]
  6. Bunde, T., Kirchner, A., Hoffmeister, B., Habedank, D., Hetzer, R., Cherepnev, G., Proesch, S., Reinke, P., Volk, H. D. & other authors ( 2005; ). Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J Exp Med 201, 1031–1036.[CrossRef]
    [Google Scholar]
  7. Chee, M. S., Bankier, A. T., Beck, S., Bohni, R., Brown, C. M., Cerny, R., Horsnell, T., Hutchison, C. A., 3rd, Kouzarides, T. & other authors ( 1990; ). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154, 125–169.
    [Google Scholar]
  8. Craighead, J. E., Kanich, R. E. & Almeida, J. D. ( 1972; ). Nonviral microbodies with viral antigenicity produced in cytomegalovirus-infected cells. J Virol 10, 766–775.
    [Google Scholar]
  9. Davignon, J. L., Castanie, P., Yorke, J. A., Gautier, N., Clement, D. & Davrinche, C. ( 1996; ). Anti-human cytomegalovirus activity of cytokines produced by CD4+ T-cell clones specifically activated by IE1 peptides in vitro. J Virol 70, 2162–2169.
    [Google Scholar]
  10. Diamond, D. J., York, J., Sun, J. Y., Wright, C. L. & Forman, S. J. ( 1997; ). Development of a candidate HLA A*0201 restricted peptide-based vaccine against human cytomegalovirus infection. Blood 90, 1751–1767.
    [Google Scholar]
  11. Elkington, R., Walker, S., Crough, T., Menzies, M., Tellam, J., Bharadwaj, M. & Khanna, R. ( 2003; ). Ex vivo profiling of CD8+-T-cell responses to human cytomegalovirus reveals broad and multispecific reactivities in healthy virus carriers. J Virol 77, 5226–5240.[CrossRef]
    [Google Scholar]
  12. Falk, C. S., Mach, M., Schendel, D. J., Weiss, E. H., Hilgert, I. & Hahn, G. ( 2002; ). NK cell activity during human cytomegalovirus infection is dominated by US2-11-mediated HLA class I down-regulation. J Immunol 169, 3257–3266.[CrossRef]
    [Google Scholar]
  13. Frankenberg, N., Pepperl-Klindworth, S., Meyer, R. G. & Plachter, B. ( 2002; ). Identification of a conserved HLA-A2-restricted decapeptide from the IE1 protein (pUL123) of human cytomegalovirus. Virology 295, 208–216.[CrossRef]
    [Google Scholar]
  14. Gallez-Hawkins, G., Villacres, M. C., Li, X., Sanborn, M. C., Lomeli, N. A. & Zaia, J. A. ( 2003; ). Use of transgenic HLA A*0201/Kb and HHD II mice to evaluate frequency of cytomegalovirus IE1-derived peptide usage in eliciting human CD8 cytokine response. J Virol 77, 4457–4462.[CrossRef]
    [Google Scholar]
  15. Hobom, U., Brune, W., Messerle, M., Hahn, G. & Koszinowski, U. H. ( 2000; ). Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol 74, 7720–7729.[CrossRef]
    [Google Scholar]
  16. Irmiere, A. & Gibson, W. ( 1983; ). Isolation and characterization of a noninfectious virion-like particle released from cells infected with human strains of cytomegalovirus. Virology 130, 118–133.[CrossRef]
    [Google Scholar]
  17. Kern, F., Surel, I. P., Faulhaber, N., Frömmel, C., Schneider-Mergener, J., Schonemann, C., Reinke, P. & Volk, H. D. ( 1999; ). Target structures of the CD8+-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J Virol 73, 8179–8184.
    [Google Scholar]
  18. Khan, N., Bruton, R., Taylor, G. S., Cobbold, M., Jones, T. R., Rickinson, A. B. & Moss, P. A. ( 2005; ). Identification of cytomegalovirus-specific cytotoxic T lymphocytes in vitro is greatly enhanced by the use of recombinant virus lacking the US2 to US11 region or modified vaccinia virus Ankara expressing individual viral genes. J Virol 79, 2869–2879.[CrossRef]
    [Google Scholar]
  19. Lacey, S. F., La Rosa, C., Zhou, W., Sharma, M. C., Martinez, J., Krishnan, A., Gallez-Hawkins, G., Thao, L., Longmate, J. & other authors ( 2006; ). Functional comparison of T cells recognizing cytomegalovirus pp65 and intermediate-early antigen polypeptides in hematopoietic stem-cell transplant and solid organ transplant recipients. J Infect Dis 194, 1410–1421.[CrossRef]
    [Google Scholar]
  20. Manley, T. J., Luy, L., Jones, T., Boeckh, M., Mutimer, H. & Riddell, S. R. ( 2004; ). Immune evasion proteins of human cytomegalovirus do not prevent a diverse CD8+ cytotoxic T-cell response in natural infection. Blood 104, 1075–1082.[CrossRef]
    [Google Scholar]
  21. McLaughlin-Taylor, E., Pande, H., Forman, S. J., Tanamachi, B., Li, C. R., Zaia, J. A., Greenberg, P. D. & Riddell, S. R. ( 1994; ). Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J Med Virol 43, 103–110.[CrossRef]
    [Google Scholar]
  22. Messerle, M., Crnkovic, I., Hammerschmidt, W., Ziegler, H. & Koszinowski, U. H. ( 1997; ). Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 94, 14759–14763.[CrossRef]
    [Google Scholar]
  23. Mocarski, E. S., Jr, Shenk, T. & Pass, R. F. ( 2007; ). Cytomegaloviruses. In Fields Virology, 5th edn, pp. 2701–2772. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  24. Pahl-Seibert, M. F., Jülch, M., Podlech, J., Thomas, D., Deegen, P., Reddehase, M. J. & Holtappels, R. ( 2005; ). Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 79, 5400–5413.[CrossRef]
    [Google Scholar]
  25. Pass, R. F. ( 2001; ). Cytomegalovirus. In Fields Virology, 4th edn, pp. 2675–2705. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams and Wilkins.
  26. Pepperl, S., Münster, J., Mach, M., Harris, J. R. & Plachter, B. ( 2000; ). Dense bodies of human cytomegalovirus induce both humoral and cellular immune responses in the absence of viral gene expression. J Virol 74, 6132–6146.[CrossRef]
    [Google Scholar]
  27. Pepperl-Klindworth, S. & Plachter, B. ( 2006; ). Current perspectives in vaccine development. In Cytomegaloviruses: Molecular Biology and Immunology. Edited by M. J. Reddehase. Wymondham, UK: Caister Academic Press.
  28. Pepperl-Klindworth, S., Frankenberg, N. & Plachter, B. ( 2002; ). Development of novel vaccine strategies against human cytomegalovirus infection based on subviral particles. J Clin Virol 25 (Suppl. 2), S75–S85.[CrossRef]
    [Google Scholar]
  29. Pepperl-Klindworth, S., Frankenberg, N., Riegler, S. & Plachter, B. ( 2003; ). Protein delivery by subviral particles of human cytomegalovirus. Gene Ther 10, 278–284.[CrossRef]
    [Google Scholar]
  30. Plachter, B., Britt, W. J., Vornhagen, R., Stamminger, T. & Jahn, G. ( 1993; ). Analysis of proteins encoded by IE-regions 1 and 2 of human cytomegalovirus using monoclonal antibodies generated against recombinant antigens. Virology 193, 642–652.[CrossRef]
    [Google Scholar]
  31. Plotkin, S. A. ( 2004; ). Cytomegalovirus and herpes simplex vaccines. In Vaccines, 4th edn, pp. 1199–1207. Edited by S. A. Plotkin & W. A. Orenstein. Philadelphia, PA: Saunders.
  32. Reddehase, M. J. ( 2002; ). Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2, 831–844.[CrossRef]
    [Google Scholar]
  33. Reddehase, M. J., Keil, G. M. & Koszinowski, U. H. ( 1984; ). The cytolytic T lymphocyte response to the murine cytomegalovirus. II. Detection of virus replication stage-specific antigens by separate populations of in vivo active cytolytic T lymphocyte precursors. Eur J Immunol 14, 56–61.[CrossRef]
    [Google Scholar]
  34. Riddell, S. R., Rabin, M., Geballe, A. P., Britt, W. J. & Greenberg, P. D. ( 1991; ). Class I MHC-restricted cytotoxic T lymphocyte recognition of cells infected with human cytomegalovirus does not require endogenous viral gene expression. J Immunol 146, 2795–2804.
    [Google Scholar]
  35. Schleiss, M. R. & Heineman, T. C. ( 2005; ). Progress toward an elusive goal: current status of cytomegalovirus vaccines. Expert Rev Vaccines 4, 381–406.[CrossRef]
    [Google Scholar]
  36. Schmolke, S., Kern, H. F., Drescher, P., Jahn, G. & Plachter, B. ( 1995; ). The dominant phosphoprotein pp65 (UL83) of human cytomegalovirus is dispensable for growth in cell culture. J Virol 69, 5959–5968.
    [Google Scholar]
  37. Severi, B., Landini, M. P. & Govoni, E. ( 1988; ). Human cytomegalovirus morphogenesis: an ultrastructural study of the late cytoplasmic phases. Arch Virol 98, 51–64.[CrossRef]
    [Google Scholar]
  38. Simon, C. O., Holtappels, R., Tervo, H. M., Böhm, V., Däubner, T., Oehrlein-Karpi, S. A., Kühnapfel, B., Renzaho, A., Strand, D. & other authors ( 2006; ). CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80, 10436–10456.[CrossRef]
    [Google Scholar]
  39. Stratton, K. R., Durch, J. S. & Lawrence, R. S. ( 2001; ). Vaccines for the 21st Century. A Tool for Decisionmaking. Washington, DC: National Academy Press.
  40. Sylwester, A. W., Mitchell, B. L., Edgar, J. B., Taormina, C., Pelte, C., Ruchti, F., Sleath, P. R., Grabstein, K. H., Hosken, N. A. & other authors ( 2005; ). Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202, 673–685.[CrossRef]
    [Google Scholar]
  41. Topilko, A. & Michelson, S. ( 1994; ). Morphological and cytochemical analysis of human cytomegalvirus inoculum: correlation of free particles in inoculum with counterparts in infected cells. Res Virol 145, 65–73.[CrossRef]
    [Google Scholar]
  42. Utz, U., Britt, W., Vugler, L. & Mach, M. ( 1989; ). Identification of a neutralizing epitope on glycoprotein gp58 of human cytomegalovirus. J Virol 63, 1995–2001.
    [Google Scholar]
  43. Varnum, S. M., Streblow, D. N., Monroe, M. E., Smith, P., Auberry, K. J., Pasa-Tolic, L., Wang, D., Camp, D. G., Rodland, K. & other authors ( 2004; ). Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J Virol 78, 10960–10966.[CrossRef]
    [Google Scholar]
  44. Vaz-Santiago, J., Lule, J., Rohrlich, P., Jacquier, C., Gibert, N., Le, R. E., Betbeder, D., Davignon, J. L. & Davrinche, C. ( 2001; ). Ex vivo stimulation and expansion of both CD4+ and CD8+ T cells from peripheral blood mononuclear cells of human cytomegalovirus-seropositive blood donors by using a soluble recombinant chimeric protein, IE1-pp65. J Virol 75, 7840–7847.[CrossRef]
    [Google Scholar]
  45. Warming, S., Costantino, N., Court, D. L., Jenkins, N. A. & Copeland, N. G. ( 2005; ). Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33, e36 [CrossRef]
    [Google Scholar]
  46. Wills, M. R., Carmichael, A. J., Mynard, K., Jin, X., Weekes, M. P., Plachter, B. & Sissons, J. G. ( 1996; ). The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65- specific CTL. J Virol 70, 7569–7579.
    [Google Scholar]
  47. Zhong, J. & Khanna, R. ( 2007; ). Vaccine strategies against human cytomegalovirus infection. Expert Rev Anti Infect Ther 5, 449–459.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83380-0
Loading
/content/journal/jgv/10.1099/vir.0.83380-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 369 – 379

HCMV BAC recombineering using positive/negative selection [ PDF] (81 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error