1887

Abstract

Blood–brain barrier (BBB) permeability was evaluated in mice and hamsters infected with West Nile virus (WNV, flavivirus) as compared to those infected with Semliki Forest (alphavirus) and Banzi (flavivirus) viruses. BBB permeability was determined by measurement of fluorescence in brain homogenates or cerebrospinal fluid (CSF) after intraperitoneal (i.p.) injection of sodium fluorescein, by macroscopic examination of brains after i.p. injection of Evans blue, or by measurement of total protein in CSF compared to serum. Lethal infection of BALB/c mice with Semliki Forest virus and Banzi virus caused the brain : serum fluorescence ratios to increase from a baseline of 2–4 % to as high as 11 and 15 %, respectively. Lethal infection of BALB/c mice with WNV did not increase BBB permeability. When C57BL/6 mice were used, BBB permeability was increased in some, but not all, of the WNV-infected animals. A procedure was developed to measure BBB permeability in live WNV-infected hamsters by comparing the fluorescence in the CSF, aspirated from the cisterna magnum, with the fluorescence in the serum. Despite a time-dependent tendency towards increased BBB permeability in some WNV-infected hamsters, the highest BBB permeability values did not correlate with mortality. These data indicated that a measurable increase in BBB permeability was not a primary determinant for lethality of WNV infection in rodents. The lack of a consistent increase in BBB permeability in WNV-infected rodents has implications for the understanding of viral entry, viral pathogenesis and accessibility of the CNS of rodents to drugs or effector molecules.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83345-0
2008-02-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/2/467.html?itemId=/content/journal/jgv/10.1099/vir.0.83345-0&mimeType=html&fmt=ahah

References

  1. Beck, D. W., Vinters, H. V., Hart, M. N. & Cancilla, P. A. ( 1984; ). Glial cells influence polarity of the blood–brain barrier. J Neuropathol Exp Neurol 43, 219–224.[CrossRef]
    [Google Scholar]
  2. Bradbury, J. ( 2005; ). Toll gate for West Nile virus brain entry. Lancet Infect Dis 5, 9
    [Google Scholar]
  3. Dallasta, L. M., Pisarov, L. A., Esplen, J. E., Werley, J. V., Moses, A. V., Nelson, J. A. & Achim, C. L. ( 1999; ). Blood–brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol 155, 1915–1927.[CrossRef]
    [Google Scholar]
  4. de Vries, H. E., Blom-Roosemalen, M. C., van Oosten, M., de Boer, A. G., van Berkel, T. J., Breimer, D. D. & Kuiper, J. ( 1996; ). The influence of cytokines on the integrity of the blood–brain barrier in vitro. J Neuroimmunol 64, 37–43.[CrossRef]
    [Google Scholar]
  5. Diamond, M. S. & Klein, R. S. ( 2004; ). West Nile virus: crossing the blood–brain barrier. Nat Med 10, 1294–1295.[CrossRef]
    [Google Scholar]
  6. Eralinna, J. P., Soilu-Hanninen, M., Roytta, M., Hukkanen, V., Salmi, A. A. & Salonen, R. ( 1996; ). Blood–brain barrier breakdown and increased intercellular adhesion molecule (ICAM-1/CD54) expression after Semliki Forest (A7) virus infection facilitates the development of experimental allergic encephalomyelitis. J Neuroimmunol 66, 103–114.[CrossRef]
    [Google Scholar]
  7. Fiala, M., Looney, D. J., Stins, M., Way, D. D., Zhang, L., Gan, X., Chiappelli, F., Schweitzer, E. S., Shapshak, P. & other authors ( 1997; ). TNF-alpha opens a paracellular route for HIV-1 invasion across the blood–brain barrier. Mol Med 3, 553–564.
    [Google Scholar]
  8. Finke, S. & Conzelmann, K. K. ( 2005; ). Replication strategies of rabies virus. Virus Res 111, 120–131.[CrossRef]
    [Google Scholar]
  9. Frankmann, S. P. ( 1986; ). A technique for repeated sampling of CSF from the anesthetized rat. Physiol Behav 37, 489–493.[CrossRef]
    [Google Scholar]
  10. Klein, R. S., Lin, E., Zhang, B., Luster, A. D., Tollett, J., Samuel, M. A., Engle, M. & Diamond, M. S. ( 2005; ). Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol 79, 11457–11466.[CrossRef]
    [Google Scholar]
  11. Kleine, T. O. & Benes, L. ( 2006; ). Immune surveillance of the human central nervous system (CNS): different migration pathways of immune cells through the blood–brain barrier and blood–cerebrospinal fluid barrier in healthy persons. Cytometry A 69, 147–151.
    [Google Scholar]
  12. Luabeya, M. K., Dallasta, L. M., Achim, C. L., Pauza, C. D. & Hamilton, R. L. ( 2000; ). Blood–brain barrier disruption in simian immunodeficiency virus encephalitis. Neuropathol Appl Neurobiol 26, 454–462.[CrossRef]
    [Google Scholar]
  13. Lustig, S., Danenberg, H. D., Kafri, Y., Kobiler, D. & Ben-Nathan, D. ( 1992; ). Viral neuroinvasion and encephalitis induced by lipopolysaccharide and its mediators. J Exp Med 176, 707–712.[CrossRef]
    [Google Scholar]
  14. Mayhan, W. G. ( 2002; ). Cellular mechanisms by which tumor necrosis factor-α produces disruption of the blood–brain barrier. Brain Res 927, 144–152.[CrossRef]
    [Google Scholar]
  15. Morrey, J. D., Smee, D. F., Sidwell, R. W. & Tseng, C. K. ( 2002; ). Identification of active compounds against a New York isolate of West Nile virus. Antiviral Res 55, 107–116.[CrossRef]
    [Google Scholar]
  16. Morrey, J. D., Day, C. W., Julander, J. G., Olsen, A. L., Sidwell, R. W., Cheney, C. D. & Blatt, L. M. ( 2004; ). Modeling hamsters for evaluating West Nile virus therapies. Antiviral Res 63, 41–50.[CrossRef]
    [Google Scholar]
  17. Morrey, J. D., Siddharthan, V., Olsen, A. L., Roper, G. Y., Wang, H. C., Baldwin, T. J., Koenig, S., Johnson, S., Nordstrom, J. L. & Diamond, M. S. ( 2006; ). Humanized monoclonal antibody against West Nile virus E protein administered after neuronal infection protects against lethal encephalitis in hamsters. J Infect Dis 194, 1300–1308.[CrossRef]
    [Google Scholar]
  18. Oliphant, T., Engle, M., Nybakken, G. E., Doane, C., Johnson, S., Huang, L., Gorlatov, S., Mehlhop, E., Marri, A. & other authors ( 2005; ). Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11, 522–530.[CrossRef]
    [Google Scholar]
  19. Olsen, A. L., Morrey, J. D., Smee, D. F. & Sidwell, R. W. ( 2007; ). Correlation between breakdown of the blood–brain barrier and disease outcome of viral encephalitis in mice. Antiviral Res 75, 104–112.[CrossRef]
    [Google Scholar]
  20. Paterson, R. ( 2005; ). How West Nile virus crosses the blood–brain barrier. Lancet Neurol 4, 18
    [Google Scholar]
  21. Ransohoff, R. M., Kivisakk, P. & Kidd, G. ( 2003; ). Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3, 569–581.[CrossRef]
    [Google Scholar]
  22. Rosenberg, Z. F. & Fauci, A. S. ( 1990; ). Immunopathogenic mechanisms of HIV infection: cytokine induction of HIV expression. Immunol Today 11, 176–180.[CrossRef]
    [Google Scholar]
  23. Samuel, M. A., Morrey, J. D. & Diamond, M. S. ( 2006; ). Caspase-3 dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis. J Virol 81, 2614–2623.
    [Google Scholar]
  24. Shrestha, B., Gottlieb, D. & Diamond, M. S. ( 2003; ). Infection and injury of neurons by West Nile encephalitis virus. J Virol 77, 13203–13213.[CrossRef]
    [Google Scholar]
  25. Sitati, E. M. & Diamond, M. S. ( 2006; ). CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol 80, 12060–12069.[CrossRef]
    [Google Scholar]
  26. Wang, T., Town, T., Alexopoulou, L., Anderson, J. F., Fikrig, E. & Flavell, R. A. ( 2004; ). Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10, 1366–1373.[CrossRef]
    [Google Scholar]
  27. Xiao, S. Y., Guzman, H., Zhang, H., Travassos da Rosa, A. P. & Tesh, R. B. ( 2001; ). West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis 7, 714–721.[CrossRef]
    [Google Scholar]
  28. Yang, J. S., Ramanathan, M. P., Muthumani, K., Choo, A. Y., Jin, S. H., Yu, Q. C., Hwang, D. S., Choo, D. K., Lee, M. D. & other authors ( 2002; ). Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg Infect Dis 8, 1379–1384.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83345-0
Loading
/content/journal/jgv/10.1099/vir.0.83345-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error