1887

Abstract

Tissue necroses and resistance during the hypersensitive response (HR) of tobacco to tobacco mosaic virus (TMV) are overcome at temperatures above 28 °C and the virus multiplies to high levels in the originally resistant -gene expressing plants. We have demonstrated that chemical compounds that generate reactive oxygen species (ROS) or directly applied hydrogen peroxide (HO) are able to induce HR-type necroses in TMV-inoculated Xanthi-nc tobacco even at high temperatures (e.g. 30 °C). The amount of superoxide (O ) decreased, while HO slightly increased in TMV- and mock-inoculated leaves at 30 °C, as compared with 20 °C. Activity of NADPH oxidase and mRNA levels of genes that encode NADPH oxidase and an alternative oxidase, respectively, were significantly lower, while activity of dehydroascorbate reductase was significantly higher at 30 °C, as compared with 20 °C. It was possible to reverse or suppress the chemically induced HR-type necrotization at 30 °C by the application of antioxidants, such as superoxide dismutase and catalase, demonstrating that the development of HR-type necroses indeed depends on a certain level of superoxide and other ROS. Importantly, high TMV levels at 30 °C were similar in infected plants, whether the HR-type necrotization developed or not. Suppression of virus multiplication in resistant, HR-producing tobacco at lower temperatures seems to be independent of the appearance of necroses but is associated with temperatures below 28 °C.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83328-0
2008-03-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/3/799.html?itemId=/content/journal/jgv/10.1099/vir.0.83328-0&mimeType=html&fmt=ahah

References

  1. Ádám, A., Farkas, T., Somlyai, G., Hevesi, M. & Király, Z. ( 1989; ). Consequence of O2 •− generation during a bacterially induced hypersensitive reaction in tobacco: deterioration of membrane lipids. Physiol Mol Plant Pathol 34, 13–26.[CrossRef]
    [Google Scholar]
  2. Ádám, A., Deising, H., Barna, B., Gullner, G., Király, Z. & Mendgen, K. ( 1997; ). Inbalances in free radical metabolism: roles in the induction of hypersensitive response and local acquired resistance of plants. In Pseudomonas syringae Pathovars and Related Pathogens (Developments in Plant Pathology), vol. 9, pp. 111–121. Edited by K. Rudolph, T. J. Burr, J. W. Mansfield, D. Stead, A. Vivian & J. von Kiezell. Dordrecht: Kluwer Academic Publishers.
  3. Aebi, H. ( 1984; ). Catalase in vitro. Methods Enzymol 105, 121–126.
    [Google Scholar]
  4. Asada, K. ( 1999; ). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50, 601–639.[CrossRef]
    [Google Scholar]
  5. Bendahmane, A., Kanyuka, K. & Baulcombe, D. C. ( 1999; ). The Rx gene from potato controls separate virus resistance and death responses. Plant Cell 11, 781–791.[CrossRef]
    [Google Scholar]
  6. Chen, Z., Todd, E., Young, J. L., Su-Chih, C. & Daniel, R. G. ( 2003; ). Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci U S A 100, 3525–3530.[CrossRef]
    [Google Scholar]
  7. Chivasa, S. & Carr, J. P. ( 1998; ). Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase. Plant Cell 10, 1489–1498.
    [Google Scholar]
  8. Chivasa, S., Murphy, A. M., Naylor, M. & Carr, J. P. ( 1997; ). Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism. Plant Cell 9, 547–557.[CrossRef]
    [Google Scholar]
  9. Clark, M. F. & Adams, A. N. ( 1977; ). Characteristics of microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34, 475–483.[CrossRef]
    [Google Scholar]
  10. Cole, A. B., Király, L., Ross, K. & Schoelz, J. E. ( 2001; ). Uncoupling resistance from cell death in the hypersensitive response of Nicotiana species to cauliflower mosaic virus infection. Mol Plant Microbe Interact 14, 31–41.[CrossRef]
    [Google Scholar]
  11. Cole, A. B., Király, L., Lane, L. C., Wiggins, E. B., Ross, K. & Schoelz, J. E. ( 2004; ). Temporal expression of PR-1 and enhanced mature plant resistance to virus infection is controlled by a single dominant gene in a new Nicotiana hybrid. Mol Plant Microbe Interact 17, 976–985.[CrossRef]
    [Google Scholar]
  12. Da Graça, J. V. & Martin, M. M. ( 1976; ). An electron microscope study of the hypersensitive tobacco infected with tobacco mosaic virus at 32 °C. Physiol Plant Pathol 8, 215–219.[CrossRef]
    [Google Scholar]
  13. del Pozo, O. & Lam, E. ( 2003; ). Expression of the baculovirus p35 protein in tobacco affects cell death progression and compromises N gene-mediated disease resistance response to Tobacco mosaic virus. Mol Plant Microbe Interact 16, 485–494.[CrossRef]
    [Google Scholar]
  14. Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Wyman, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kesssman, H. & other authors ( 1994; ). A central role of salicylic acid in plant disease resistance. Science 266, 1247–1250.[CrossRef]
    [Google Scholar]
  15. Delledonne, M., Zeier, J., Marocco, A. & Lamb, C. ( 2001; ). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98, 13454–13459.[CrossRef]
    [Google Scholar]
  16. Dinesh-Kumar, S. P., Tham, W.-H. & Baker, B. J. ( 2000; ). Structure–function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci U S A 97, 14789–14794.[CrossRef]
    [Google Scholar]
  17. Doke, N. & Ohashi, Y. ( 1988; ). Involvement of an O2 •−-generating system in the induction of necrotic lesions on tobacco leaves infected with Tobacco mosaic virus. Physiol Mol Plant Pathol 32, 163–175.[CrossRef]
    [Google Scholar]
  18. Dorey, S., Baillieul, F., Saindrenan, P., Fritig, B. & Kaufmann, S. ( 1998; ). Tobacco class I and II catalases are differentially expressed during elicitor-induced hypersensitive cell death and localized acquired resistance. Mol Plant Microbe Interact 11, 1102–1109.[CrossRef]
    [Google Scholar]
  19. Dutilleul, C., Garmier, M., Noctor, G., Mathieu, C., Chétrit, P., Foyer, C. H. & de Paepe, R. ( 2003; ). Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15, 1212–1226.[CrossRef]
    [Google Scholar]
  20. El-Zahaby, H. M., Gullner, G. & Király, Z. ( 1995; ). Effect of powdery mildew infection of barley on the ascorbate-glutathione cycle and other antioxidants in different host-pathogen interactions. Phytopathology 85, 1225–1230.[CrossRef]
    [Google Scholar]
  21. El-Zahaby, H. M., Hafez, Y. M. & Király, Z. ( 2004; ). Effect of reactive oxygen species on plant pathogens in planta and on disease symptoms. Acta Phytopathol Entomol Hung 39, 325–345.[CrossRef]
    [Google Scholar]
  22. Farkas, G. L., Király, Z. & Solymosi, F. ( 1960; ). Role of oxidative metabolism in the localization of plant viruses. Virology 12, 408–421.[CrossRef]
    [Google Scholar]
  23. Fodor, J., Gullner, G., Ádám, A. L., Barna, B., Kömives, T. & Király, Z. ( 1997; ). Local and systemic responses of antioxidants to tobacco mosaic virus infection and to salicylic acid in tobacco: role in systemic acquired resistance. Plant Physiol 114, 1443–1451.
    [Google Scholar]
  24. Foyer, C. H., Lopez-Delgado, H., Dat, J. F. & Scott, I. M. ( 1997; ). Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 100, 241–254.[CrossRef]
    [Google Scholar]
  25. Gassmann, W. ( 2005; ). Natural variation in the Arabidopsis response to the avirulence gene hopPsyA uncouples the hypersensitive response from disease resistance. Mol Plant Microbe Interact 18, 1054–1060.[CrossRef]
    [Google Scholar]
  26. Grant, J. J. & Loake, G. J. ( 2000; ). Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124, 21–30.[CrossRef]
    [Google Scholar]
  27. Guo, A., Durner, J. & Klessig, D. F. ( 1998; ). Characterization of a tobacco epoxide hydrolase gene induced during the resistance response to TMV. Plant J 15, 647–656.[CrossRef]
    [Google Scholar]
  28. Gupta, A. S., Webb, R. P., Holiday, A. S. & Allen, R. D. ( 1993; ). Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol 103, 1067–1073.
    [Google Scholar]
  29. Hafez, Y. M. & Király, Z. ( 2003; ). Role of hydrogen peroxide in symptom expression of barley susceptible and resistant to powdery mildew. Acta Phytopathol Entomol Hung 38, 227–236.[CrossRef]
    [Google Scholar]
  30. Halliwell, B. ( 2006; ). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141, 312–322.[CrossRef]
    [Google Scholar]
  31. Holmes, F. O. ( 1938; ). Inheritance of resistance to tobacco mosaic disease in tobacco. Phytopathology 28, 553–561.
    [Google Scholar]
  32. Hückelhoven, R., Fodor, J., Preis, C. & Kogel, K.-H. ( 1999; ). Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with H2O2 but not with salicylic acid accumulation. Plant Physiol 119, 1251–1260.[CrossRef]
    [Google Scholar]
  33. Ito, N., Takabatake, R., Seo, S., Hiraga, S., Mitsuhara, I. & Ohashi, Y. ( 2002; ). Induced expression of a temperature-sensitive leucine-rich repeat receptor-like protein kinase gene by hypersensitive cell death and wounding in tobacco plant carrying the N resistance gene. Plant Cell Physiol 43, 266–274.[CrossRef]
    [Google Scholar]
  34. Jabs, T., Dietrich, R. A. & Dangl, J. L. ( 1996; ). Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273, 1853–1856.[CrossRef]
    [Google Scholar]
  35. Jambunathan, N. & McNellis, T. W. ( 2003; ). Regulation of Arabidopsis COPINE 1 gene expression in response to pathogens and abiotic stimuli. Plant Physiol 132, 1370–1381.[CrossRef]
    [Google Scholar]
  36. Jordan, C. M., Wakeman, R. J. & Devay, J. E. ( 1992; ). Toxicity of free riboflavin and methionine riboflavin solutions to Phytophthora infestans and the reduction of potato late blight disease. Can J Microbiol 38, 1108–1111.[CrossRef]
    [Google Scholar]
  37. Kassanis, B. ( 1952; ). Some effects of high temperature on the susceptibility of plants to infection with viruses. Ann Appl Biol 39, 358–369.[CrossRef]
    [Google Scholar]
  38. Király, L. & Király, Z. ( 2006; ). To die or not to die – is cell death dispensable for resistance during the plant hypersensitive response? Acta Phytopathol Entomol Hung 41, 11–21.[CrossRef]
    [Google Scholar]
  39. Király, Z., El-Zahaby, H., Galal, A., Abdou, S., Ádám, A., Barna, B. & Klement, Z. ( 1993; ). Effect of oxy free radicals on plant pathogenic bacteria and fungi and on some plant diseases. In Oxygen Free Radicals and Scavengers in the Natural Sciences, pp. 9–19. Edited by G. Mózsik, I. Emerit, J. Fehér, B. Matkovics & Á. Vincze. Budapest: Akadémiai Kiadó.
  40. Király, Z., Barna, B., Kecskés, A. & Fodor, J. ( 2002; ). Down-regulation of antioxidative capacity in a transgenic tobacco which fails to develop acquired resistance to necrotization caused by TMV. Free Radic Res 36, 981–991.[CrossRef]
    [Google Scholar]
  41. Klapheck, S., Zimmer, I. & Cosse, H. ( 1990; ). Scavenging of hydrogen peroxide in the endosperm of Ricinus communis by ascorbate peroxidase. Plant Cell Physiol 31, 1005–1013.
    [Google Scholar]
  42. Kwon, S. Y., Jeong, Y. J., Lee, H. S., Kim, J. S., Cho, K. Y., Allen, R. D. & Kwak, S. S. ( 2002; ). Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25, 873–882.[CrossRef]
    [Google Scholar]
  43. Lamb, C. & Dixon, R. A. ( 1997; ). The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48, 251–275.[CrossRef]
    [Google Scholar]
  44. Lee, Y.-P., Kim, S. H., Bang, J. W., Lee, H. S., Kwak, S. S. & Kwon, S. Y. ( 2007; ). Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26, 591–598.[CrossRef]
    [Google Scholar]
  45. Lennon, A. M., Neuenschwander, U. H., Ribas-Carbo, M., Giles, L., Ryals, J. A. & Siedow, J. N. ( 1997; ). The effects of salicylic acid and tobacco mosaic virus infection on the alternative oxidase of tobacco. Plant Physiol 115, 783–791.
    [Google Scholar]
  46. Levine, A., Tenhaken, R., Dixon, R. & Lamb, C. ( 1994; ). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583–593.[CrossRef]
    [Google Scholar]
  47. Liu, Y., Burch-Smith, T., Schiff, M., Feng, S. & Dinesh-Kumar, S. P. ( 2004; ). Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279, 2101–2108.[CrossRef]
    [Google Scholar]
  48. Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B. & Dinesh-Kumar, S. P. ( 2005; ). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567–577.[CrossRef]
    [Google Scholar]
  49. Malamy, J., Hennig, J. & Klessig, D.F. ( 1992; ). Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell 4, 359–366.[CrossRef]
    [Google Scholar]
  50. Marathe, R., Anandalakshmi, R., Liu, Y. & Dinesh-Kumar, S. P. ( 2002; ). The tobacco mosaic virus resistance gene, N. Mol Plant Pathol 3, 167–172.[CrossRef]
    [Google Scholar]
  51. Maxwell, D. P., Yong, W. & Lee, M. ( 1999; ). The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci U S A 96, 8271–8276.[CrossRef]
    [Google Scholar]
  52. Mittler, R. ( 2002; ). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7, 405–410.[CrossRef]
    [Google Scholar]
  53. Mittler, R., Feng, X. & Cohen, M. ( 1998; ). Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell 10, 461–473.[CrossRef]
    [Google Scholar]
  54. Mittler, R., Herr, E. H., Orvar, B. L., van Camp, W., Willekens, H., Inzé, D. & Ellis, B. E. ( 1999; ). Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc Natl Acad Sci U S A 96, 14165–14170.[CrossRef]
    [Google Scholar]
  55. Moeder, W., Yoshioka, K. & Klessig, D. F. ( 2005; ). Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens. Mol Plant Microbe Interact 18, 116–124.[CrossRef]
    [Google Scholar]
  56. Møller, I. M., Jensen, P. E. & Hansson, A. ( 2007; ). Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58, 459–481.[CrossRef]
    [Google Scholar]
  57. Murphy, A. M., Gilliland, A., York, C. J., Hyman, B. & Carr, J. P. ( 2004; ). High-level expression of alternative oxidase protein sequences enhances the spread of viral vectors in resistant and susceptible plants. J Gen Virol 85, 3777–3786.[CrossRef]
    [Google Scholar]
  58. Ordog, S. H., Higgins, V. J. & Vanlerberghe, G. C. ( 2002; ). Mitochondrial alternative oxidase is not a critical component of plant viral resistance but may play a role in the hypersensitive response. Plant Physiol 129, 1858–1865.[CrossRef]
    [Google Scholar]
  59. Padgett, H. S. & Beachy, R. N. ( 1993; ). Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. Plant Cell 5, 577–586.[CrossRef]
    [Google Scholar]
  60. Padgett, H. S., Watanabe, Y. & Beachy, R. N. ( 1997; ). Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. Mol Plant Microbe Interact 10, 709–715.[CrossRef]
    [Google Scholar]
  61. Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J. E., Rodermel, S., Inzé, D. & Mittler, R. ( 2002; ). Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32, 329–342.[CrossRef]
    [Google Scholar]
  62. Sagi, M. & Fluhr, R. ( 2006; ). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141, 336–340.[CrossRef]
    [Google Scholar]
  63. Samuel, G. ( 1931; ). Some experiments on inoculating methods with plant viruses and on local lesions. Ann Appl Biol 18, 494–507.[CrossRef]
    [Google Scholar]
  64. Simon-Plas, F., Elmayan, T. & Blein, J. P. ( 2002; ). The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. Plant J 31, 137–147.[CrossRef]
    [Google Scholar]
  65. Strawn, M. A., Marr, S. K., Inoue, K., Inada, N., Zubieta, C. & Wildermuth, M. C. ( 2007; ). Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282, 5919–5933.[CrossRef]
    [Google Scholar]
  66. Takabatake, R., Seo, S., Mitsuhara, I., Tsuda, S. & Ohashi, Y. ( 2006; ). Accumulation of the two transcripts of the N gene, conferring resistance to Tobacco mosaic virus, is probably important for N gene-dependent hypersensitive cell death. Plant Cell Physiol 47, 254–261.
    [Google Scholar]
  67. Tang, L., Kwon, S. Y., Kim, S. H., Kim, J. S., Choi, J. S., Cho, K. Y., Sung, C. K., Kwak, S. S. & Lee, H. S. ( 2006; ). Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25, 1380–1386.[CrossRef]
    [Google Scholar]
  68. Thordal-Christensen, H., Zhang, Z., Wie, Y. & Collinge, D. B. ( 1997; ). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J 11, 1187–1194.[CrossRef]
    [Google Scholar]
  69. Tóbiás, I., Rast, A. T. B. & Maat, D. Z. ( 1982; ). Tobamoviruses of pepper, eggplant and tobacco: comparative host reactions and serological relationships. Eur J Plant Pathol 88, 257–268.
    [Google Scholar]
  70. Torres, M. A. & Dangl, J. L. ( 2005; ). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8, 397–403.[CrossRef]
    [Google Scholar]
  71. Torres, M. A., Jones, J. D. G. & Dangl, J. L. ( 2005; ). Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37, 1130–1134.[CrossRef]
    [Google Scholar]
  72. Torres, M. A., Jones, J. D. G. & Dangl, J. L. ( 2006; ). Reactive oxygen species signaling in response to pathogens. Plant Physiol 141, 373–378.[CrossRef]
    [Google Scholar]
  73. Tsang, E. W. T., Bowler, C., Herouart, D., Van Camp, W., Villaroel, R., Genetello, C., Van Montagu, M. & Inzé, D. ( 1991; ). Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3, 783–792.[CrossRef]
    [Google Scholar]
  74. Tzeng, D. D. & DeVay, J. E. ( 1993; ). Role of oxygen radicals in plant disease development. In Advances in Plant Pathology, vol. 10, pp. 1–34. Edited by J. H. Andrews & I. C. Tommerup. London: Academic Press.
  75. Wu, G., Shortt, B. J., Lawrence, E. B., Leon, J., Fitzsimmons, K. C., Levine, E. B., Raskin, I. & Shah, D. M. ( 1997; ). Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115, 427–435.
    [Google Scholar]
  76. Yamamizo, C., Kuchimura, K., Kobayashi, A., Katou, S., Kawakita, K., Jones, J. D. G., Doke, N. & Yoshioka, H. ( 2006; ). Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol 140, 681–692.[CrossRef]
    [Google Scholar]
  77. Yang, S. & Hua, J. ( 2004; ). A haplotype-specific resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16, 1060–1071.[CrossRef]
    [Google Scholar]
  78. Yi, S. Y., Yu, S. H. & Choi, D. ( 1999; ). Molecular cloning of a catalase cDNA from Nicotiana glutinosa L. and its repression by tobacco mosaic virus infection. Mol Cells 9, 320–325.
    [Google Scholar]
  79. Yoshioka, H., Numata, N., Nakajima, K., Katou, S., Kawakita, K., Rowland, O., Jones, J. D. G. & Doke, N. ( 2003; ). Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15, 706–718.[CrossRef]
    [Google Scholar]
  80. Yu, I. C., Parker, J. & Bent, A. F. ( 1998; ). Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci U S A 95, 7819–7824.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83328-0
Loading
/content/journal/jgv/10.1099/vir.0.83328-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error