1887

Abstract

Internal ribosome entry site (IRES) elements were described in picornaviruses as an essential region of the viral RNA. Understanding of IRES function requires a detailed knowledge of each step involved in the internal initiation process, from RNA folding and IRES–protein interaction to ribosome recruitment. Thus, deciphering IRES accessibility to external agents due to RNA structural features, as well as RNA–protein protection within living cells, is of primary importance. In this study, two chemical reagents, dimethylsulfate (DMS) and aminomethylpsoralen, have been used to footprint the entire IRES of foot-and-mouth disease virus (FMDV) in living cells; these reagents enter the cell membrane and interact with nucleic acids in a structure-dependent manner. For FMDV, as in other picornaviruses, viral infection is dependent on the correct function of the IRES; therefore, the IRES region itself constitutes a useful target of antiviral drugs. Here, the footprint of a picornavirus IRES element in the context of a biologically active mRNA is shown for the first time. The accessibility of unpaired adenosine and cytosine nucleotides in the entire FMDV IRES was first obtained by DMS probing; subsequently, this information was used to interpret the footprint data obtained for the mRNA encompassing the IRES element in the intercistronic space. The results of DMS accessibility and UV–psoralen cross-linking studies in the competitive cellular environment provided evidence for differences in RNA structure from data obtained , and provided essential information to identify appropriate targets within the FMDV IRES aimed at combating this important pathogen.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83218-0
2007-11-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3053.html?itemId=/content/journal/jgv/10.1099/vir.0.83218-0&mimeType=html&fmt=ahah

References

  1. Antal, M., Mougin, A., Kis, M., Boros, E., Steger, G., Jakab, G., Solymosy, F. & Branlant, C. ( 2000; ). Molecular characterization at the RNA and gene levels of U3 snoRNA from a unicellular green alga, Chlamydomonas reinhardtii. Nucleic Acids Res 28, 2959–2968.[CrossRef]
    [Google Scholar]
  2. Baird, S. D., Turcotte, M., Korneluk, R. G. & Holcik, M. ( 2006; ). Searching for IRES. RNA 12, 1755–1785.[CrossRef]
    [Google Scholar]
  3. Bassili, G., Tzima, E., Song, Y., Saleh, L., Ochs, K. & Niepmann, M. ( 2004; ). Sequence and secondary structure requirements in a highly conserved element for foot-and-mouth disease virus internal ribosome entry site activity and eIF4G binding. J Gen Virol 85, 2555–2565.[CrossRef]
    [Google Scholar]
  4. Bonnal, S., Schaeffer, C., Creancier, L., Clamens, S., Moine, H., Prats, A. C. & Vagner, S. ( 2003; ). A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem 278, 39330–39336.[CrossRef]
    [Google Scholar]
  5. Brunel, C. & Romby, P. ( 2000; ). Probing RNA structure and RNA–ligand complexes with chemical probes. Methods Enzymol 318, 3–21.
    [Google Scholar]
  6. Clark, A. T., Robertson, M. E., Conn, G. L. & Belsham, G. J. ( 2003; ). Conserved nucleotides within the J domain of the encephalomyocarditis virus internal ribosome entry site are required for activity and for interaction with eIF4G. J Virol 77, 12441–12449.[CrossRef]
    [Google Scholar]
  7. Costantino, D. & Kieft, J. S. ( 2005; ). A preformed compact ribosome-binding domain in the cricket paralysis-like virus IRES RNAs. RNA 11, 332–343.[CrossRef]
    [Google Scholar]
  8. Du, Z., Ulyanov, N. B., Yu, J., Andino, R. & James, T. L. ( 2004; ). NMR structures of loop B RNAs from the stem-loop IV domain of the enterovirus internal ribosome entry site: a single C to U substitution drastically changes the shape and flexibility of RNA. Biochemistry 43, 5757–5771.[CrossRef]
    [Google Scholar]
  9. Fernandez-Miragall, O. & Martinez-Salas, E. ( 2003; ). Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA 9, 1333–1344.[CrossRef]
    [Google Scholar]
  10. Fernandez-Miragall, O., Ramos, R., Ramajo, J. & Martinez-Salas, E. ( 2006; ). Evidence of reciprocal tertiary interactions between conserved motifs involved in organizing RNA structure essential for internal initiation of translation. RNA 12, 223–234.
    [Google Scholar]
  11. Forstemann, K. & Lingner, J. ( 2005; ). Telomerase limits the extent of base pairing between template RNA and telomeric DNA. EMBO Rep 6, 361–366.[CrossRef]
    [Google Scholar]
  12. Gamarnik, A. V., Böddeker, N. & Andino, R. ( 2000; ). Translation and replication of human rhinovirus type 14 and mengovirus in Xenopus oocytes. J Virol 74, 11983–11987.[CrossRef]
    [Google Scholar]
  13. Hartshorne, T. ( 1998; ). Distinct regions of U3 snoRNA interact at two sites within the 5′ external transcribed spacer of pre-rRNAs in Trypanosoma brucei cells. Nucleic Acids Res 26, 2541–2553.[CrossRef]
    [Google Scholar]
  14. Hellen, C. U. & Sarnow, P. ( 2001; ). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15, 1593–1612.[CrossRef]
    [Google Scholar]
  15. Inoue, T. & Cech, T. R. ( 1985; ). Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc Natl Acad Sci U S A 82, 648–652.[CrossRef]
    [Google Scholar]
  16. Jan, E. ( 2006; ). Divergent IRES elements in invertebrates. Virus Res 119, 16–28.[CrossRef]
    [Google Scholar]
  17. Jan, E. & Sarnow, P. ( 2002; ). Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J Mol Biol 324, 889–902.[CrossRef]
    [Google Scholar]
  18. Kieft, J. S., Zhou, K., Grech, A., Jubin, R. & Doudna, J. A. ( 2002; ). Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation. Nat Struct Biol 9, 370–374.
    [Google Scholar]
  19. Kolupaeva, V. G., Pestova, T. V., Hellen, C. U. & Shatsky, I. N. ( 1998; ). Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J Biol Chem 273, 18599–18604.[CrossRef]
    [Google Scholar]
  20. Kolupaeva, V. G., Lomakin, I. B., Pestova, T. V. & Hellen, C. U. ( 2003; ). Eukaryotic initiation factors 4G and 4A mediate conformational changes downstream of the initiation codon of the encephalomyocarditis virus internal ribosomal entry site. Mol Cell Biol 23, 687–698.[CrossRef]
    [Google Scholar]
  21. Komura, J., Ikehata, H., Hosoi, Y., Riggs, A. D. & Ono, T. ( 2001; ). Mapping psoralen cross-links at the nucleotide level in mammalian cells: suppression of cross-linking at transcription factor- or nucleosome-binding sites. Biochemistry 40, 4096–4105.[CrossRef]
    [Google Scholar]
  22. Kramer, P. R., Bat, O. & Sinden, R. R. ( 1999; ). Measurement of localized DNA supercoiling and topological domain size in eukaryotic cells. Methods Enzymol 304, 639–650.
    [Google Scholar]
  23. Le Quesne, J. P., Stoneley, M., Fraser, G. A. & Willis, A. E. ( 2001; ). Derivation of a structural model for the c-myc IRES. J Mol Biol 310, 111–126.[CrossRef]
    [Google Scholar]
  24. Lloyd, R. E. ( 2006; ). Translational control by viral proteinases. Virus Res 119, 76–88.[CrossRef]
    [Google Scholar]
  25. Lopez de Quinto, S. & Martinez-Salas, E. ( 1997; ). Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation. J Virol 71, 4171–4175.
    [Google Scholar]
  26. Lopez de Quinto, S. & Martinez-Salas, E. ( 2000; ). Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA 6, 1380–1392.[CrossRef]
    [Google Scholar]
  27. Lopez de Quinto, S., Lafuente, E. & Martinez-Salas, E. ( 2001; ). IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA 7, 1213–1226.[CrossRef]
    [Google Scholar]
  28. Lopez de Quinto, S., Saiz, M., de la Morena, D., Sobrino, F. & Martinez-Salas, E. ( 2002; ). IRES-driven translation is stimulated separately by the FMDV 3′-NCR and poly(A) sequences. Nucleic Acids Res 30, 4398–4405.[CrossRef]
    [Google Scholar]
  29. Lukavsky, P. J., Otto, G. A., Lancaster, A. M., Sarnow, P. & Puglisi, J. D. ( 2000; ). Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nat Struct Biol 7, 1105–1110.[CrossRef]
    [Google Scholar]
  30. Luz, N. & Beck, E. ( 1991; ). Interaction of a cellular 57-kilodalton protein with the internal translation initiation site of foot-and-mouth disease virus. J Virol 65, 6486–6494.
    [Google Scholar]
  31. Martinez-Salas, E. & Fernandez-Miragall, O. ( 2004; ). Picornavirus IRES: structure function relationship. Curr Pharm Des 10, 3757–3767.[CrossRef]
    [Google Scholar]
  32. Martinez-Salas, E., Saiz, J. C., Davila, M., Belsham, G. J. & Domingo, E. ( 1993; ). A single nucleotide substitution in the internal ribosome entry site of foot-and-mouth disease virus leads to enhanced cap-independent translation in vivo. J Virol 67, 3748–3755.
    [Google Scholar]
  33. Martinez-Salas, E., Ramos, R., Lafuente, E. & Lopez de Quinto, S. ( 2001; ). Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J Gen Virol 82, 973–984.
    [Google Scholar]
  34. Mereau, A., Fournier, R., Gregoire, A., Mougin, A., Fabrizio, P., Luhrmann, R. & Branlant, C. ( 1997; ). An in vivo and in vitro structure-function analysis of the Saccharomyces cerevisiae U3A snoRNP: protein-RNA contacts and base-pair interaction with the pre-ribosomal RNA. J Mol Biol 273, 552–571.[CrossRef]
    [Google Scholar]
  35. Mitchell, S. A., Spriggs, K. A., Coldwell, M. J., Jackson, R. J. & Willis, A. E. ( 2003; ). The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol Cell 11, 757–771.[CrossRef]
    [Google Scholar]
  36. Pfingsten, J. S., Costantino, D. A. & Kieft, J. S. ( 2006; ). Structural basis for ribosome recruitment and manipulation by a viral IRES RNA. Science 314, 1450–1454.[CrossRef]
    [Google Scholar]
  37. Phelan, M., Banks, R. J., Conn, G. & Ramesh, V. ( 2004; ). NMR studies of the structure and Mg2+ binding properties of a conserved RNA motif of EMCV picornavirus IRES element. Nucleic Acids Res 32, 4715–4724.[CrossRef]
    [Google Scholar]
  38. Pickering, B. M., Mitchell, S. A., Spriggs, K. A., Stoneley, M. & Willis, A. E. ( 2004; ). Bag-1 internal ribosome entry segment activity is promoted by structural changes mediated by poly(rC) binding protein 1 and recruitment of polypyrimidine tract binding protein 1. Mol Cell Biol 24, 5595–5605.[CrossRef]
    [Google Scholar]
  39. Pilipenko, E. V., Blinov, V. M., Chernov, B. K., Dmitrieva, T. M. & Agol, V. I. ( 1989; ). Conservation of the secondary structure elements of the 5′-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Res 17, 5701–5711.[CrossRef]
    [Google Scholar]
  40. Pilipenko, E. V., Gmyl, A. P., Maslova, S. V., Svitkin, Y. V., Sinyakov, A. N. & Agol, V. I. ( 1992; ). Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell 68, 119–131.[CrossRef]
    [Google Scholar]
  41. Pilipenko, E. V., Pestova, T. V., Kolupaeva, V. G., Khitrina, E. V., Poperechnaya, A. N., Agol, V. I. & Hellen, C. U. ( 2000; ). A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev 14, 2028–2045.
    [Google Scholar]
  42. Piron, M., Beguiristain, N., Nadal, A., Martinez-Salas, E. & Gomez, J. ( 2005; ). Characterizing the function and structural organization of the 5′ tRNA-like motif within the hepatitis C virus quasispecies. Nucleic Acids Res 33, 1487–1502.[CrossRef]
    [Google Scholar]
  43. Pisarev, A. V., Chard, L. S., Kaku, Y., Johns, H. L., Shatsky, I. N. & Belsham, G. J. ( 2004; ). Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J Virol 78, 4487–4497.[CrossRef]
    [Google Scholar]
  44. Ramos, R. & Martinez-Salas, E. ( 1999; ). Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). RNA 5, 1374–1383.[CrossRef]
    [Google Scholar]
  45. Reigadas, S., Pacheco, A., Ramajo, J., de Quinto, S. L. & Martinez-Salas, E. ( 2005; ). Specific interference between two unrelated internal ribosome entry site elements impairs translation efficiency. FEBS Lett 579, 6803–6808.[CrossRef]
    [Google Scholar]
  46. Robertson, M. E., Seamons, R. A. & Belsham, G. J. ( 1999; ). A selection system for functional internal ribosome entry site (IRES) elements: analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA 5, 1167–1179.[CrossRef]
    [Google Scholar]
  47. Sarnow, P. ( 2003; ). Viral internal ribosome entry site elements: novel ribosome-RNA complexes and roles in viral pathogenesis. J Virol 77, 2801–2806.[CrossRef]
    [Google Scholar]
  48. Schuler, M., Connell, S. R., Lescoute, A., Giesebrecht, J., Dabrowski, M., Schroeer, B., Mielke, T., Penczek, P. A., Westhof, E. & Spahn, C. M. ( 2006; ). Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat Struct Mol Biol 13, 1092–1096.[CrossRef]
    [Google Scholar]
  49. Serrano, P., Pulido, M. R., Saiz, M. & Martinez-Salas, E. ( 2006; ). The 3′ end of the foot-and-mouth disease virus genome establishes two distinct long-range RNA–RNA interactions with the 5′ end region. J Gen Virol 87, 3013–3022.[CrossRef]
    [Google Scholar]
  50. Serrano, P., Gomez, J. & Martinez-Salas, E. ( 2007; ). Characterization of a cyanobacterial RNase P ribozyme recognition motif in the IRES of foot-and-mouth disease virus reveals a unique structural element. RNA 13, 849–859.[CrossRef]
    [Google Scholar]
  51. Sobrino, F., Saiz, M., Jimenez-Clavero, M. A., Nunez, J. I., Rosas, M. F., Baranowski, E. & Ley, V. ( 2001; ). Foot-and-mouth disease virus: a long known virus, but a current threat. Vet Res 32, 1–30.[CrossRef]
    [Google Scholar]
  52. Stassinopoulos, I. A. & Belsham, G. J. ( 2001; ). A novel protein-RNA binding assay: functional interactions of the foot-and-mouth disease virus internal ribosome entry site with cellular proteins. RNA 7, 114–122.[CrossRef]
    [Google Scholar]
  53. Stoneley, M. & Willis, A. E. ( 2004; ). Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23, 3200–3207.[CrossRef]
    [Google Scholar]
  54. Terenin, I. M., Dmitriev, S. E., Andreev, D. E., Royall, E., Belsham, G. J., Roberts, L. O. & Shatsky, I. N. ( 2005; ). A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry. Mol Cell Biol 25, 7879–7888.[CrossRef]
    [Google Scholar]
  55. Tyc, K. & Steitz, J. A. ( 1992; ). A new interaction between the mouse 5′ external transcribed spacer of pre-rRNA and U3 snRNA detected by psoralen crosslinking. Nucleic Acids Res 20, 5375–5382.[CrossRef]
    [Google Scholar]
  56. Walter, B. L., Nguyen, J. H., Ehrenfeld, E. & Semler, B. L. ( 1999; ). Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. RNA 5, 1570–1585.[CrossRef]
    [Google Scholar]
  57. Wassarman, D. A. & Steitz, J. A. ( 1992; ). Interactions of small nuclear RNA's with precursor messenger RNA during in vitro splicing. Science 257, 1918–1925.[CrossRef]
    [Google Scholar]
  58. Wellinger, R. E., Lucchini, R., Dammann, R. & Sogo, J. M. ( 1999; ). In vivo mapping of nucleosomes using psoralen-DNA crosslinking and primer extension. Methods Mol Biol 119, 161–173.
    [Google Scholar]
  59. Wells, S. E., Hughes, J. M., Igel, A. H. & Ares, M., Jr ( 2000; ). Use of dimethyl sulfate to probe RNA structure in vivo. Methods Enzymol 318, 479–493.
    [Google Scholar]
  60. Zaug, A. J. & Cech, T. R. ( 1995; ). Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA. RNA 1, 363–374.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83218-0
Loading
/content/journal/jgv/10.1099/vir.0.83218-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error